

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T580(E)(J28)T AUGUST EXAMINATION

NATIONAL CERTIFICATE

ENGINEERING SCIENCE N4

(15070434)

28 July 2014 (Y-Paper) 13:00–16:00

This question paper consists of 6 pages, 1 diagram sheet and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ENGINEERING SCIENCE N4 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Subsections of questions should be kept together.
- 5. Rule off across the page on completion of each section.
- 6. ALL formulae should be shown in the answers.
- 7. Show ALL calculations.
- 8. Answers should be in BLUE or BLACK ink.
- 9. ALL diagrams should be in pencil.
- 10. ALL the answers must be rounded off to THREE decimal places.
- 11. Take $g = 9.8 \text{ m/s}^2$.

12

Write neatly and legibly.

QUESTION 1

1.1		ruises at 12 km/h in still waters and sets course due south west. It is ff course by a current flowing W 15° N at a rate of 4 km/h.			
	1.1.1	Draw a neat vector diagram to represent the information. Include the resultant in the diagram.	(2)		
	1.1.2	Calculate the magnitude and direction of the resultant velocity.	(3)		
1.2	A projec of 125 m	tile is launched at an angle of 30° with the horizontal, with a velocity n/s.			
	Calculat	e the following:			
	1.2.1	The time taken for the projectile to hit a target at ground level on the same horizontal plane	(2)		
	1.2.2	The maximum range that a projectile of this kind can reach	(1)		
	1.2.3	The height reached by the projectile above the horizontal after travelling for 5 seconds	(2)		
1.3	Ship A south 15	sails at 30 km/h north 48° west, whilst ship B is sailing at 20 km/h 5° east.			
	1.3.1	Draw a neat vector diagram and show clearly the vector representing the velocity of ship A relative to ship B.	(3)		
	1.3.2	Calculate the velocity of ship A relative to ship B in magnitude and direction.	(2) [15]		
QUEST	FION 2				
2.1	Define th	ne term <i>radian</i> .	(1)		
2.2	2 Draw a sketch to show what is meant by your answer in QUESTION 2.1.				
2.3		utes indicator of a tower clock is 1,2 m long and takes 20 minutes to om the 12 numeral to the 4 numeral.			
	Calculat	e the following:			
	2.3.1	The angular displacement of the indicator in degrees and in radians	(2)		

[10]

T580(E)(J28)T

(1)

QUESTION 3

- 3.1 Define Newton's second law.
- 3.2 The engine of a motor car with a mass of 900 kg is switched off while moving at 60 km/h on a downhill with a slope of 1 in 15. The resistance to motion is 200 N. At the end of the downhill the motor car travels at 90 km/h.

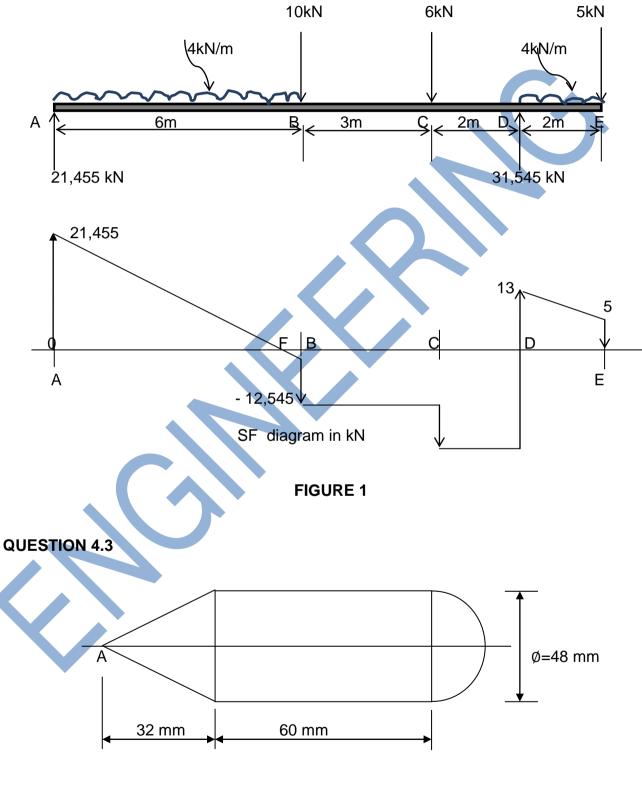
Calculate the following:

	3.2.1	The weight component parallel to the plane	(2)
	3.2.2	The acceleration force	(2)
	3.2.3	The acceleration	(2)
	3.2.4	The length of the downhill when 90 km/h is reached	(2)
	3.2.5	The potential energy lost	(2) [11]
QUEST	ION 4		
4.1	Define be	ending moment of a beam.	(2)
4.2		E 1 on the DIAGRAM SHEET (attached), the beam is in equilibrium ed as indicated in the sketch.	
		ear-force diagram is also given. (Not according to scale.) $A = 21,455$ kN and D = 31,545 kN.	
	4.2.1	Determine the position and magnitude of the maximum bending moment.	(3)
	4.2.2	Draw the bending moment diagram according to a suitable scale, showing ALL the main values.	(4)
4.3		FIGURE 2 on the DIAGRAM SHEET (attached) and determine the of the centre of gravity, from point A.	(5) [14]
X			[14]

QUESTION 5

5.1	Define F	Pascals' law.	(2)
5.2		of a hydraulic press is 100 mm in diameter. The diameter and stroke plunger are 20 mm and 50 mm respectively. The mechanical ge is 16.	
	Calculat	e the following:	
	5.2.1	The force to be applied to the lever to lift a load of 2,3 Mg, when the efficiency is 85%	(5)
	5.2.2	The actual volume of liquid delivered to the ram after 5 strokes if the slip is 5%	(3)
	5.2.3	The distance moved by the ram (in mm) after 5 strokes	(2)
5.3	The follo	owing details refer to a single-cylinder water pump:	
	Static he Area of p Stroke le Rotation	plunger = $17,671 \times 10^{-3} \text{ m}^2$	
	Calculat	e the following:	
	5.3.1	The volume of water delivered per second	(2)
	5.3.2	The force per second on the piston	(2)
	5.3.3	The theoretical power of the pump	(2)
5.4	Explain t	the function of a hydraulic accumulator.	(2) [20]

(2)


QUESTION 6

- 6.1 Define Hooke's law.
- The following results were obtained in a tensile test on a mild steel specimen 6.2 20 mm wide and 10 mm thick. The length is 200 mm.

				The length is 2				
		Load (kN)		16 32	48	64		
	Extension	on (mm)	0,066	0,133	0,198	0,264		
	6.2.1	Draw up a table of stress (MPa) against strain.						
	6.2.2 Draw the stress-strain graph.							
	6.2.3	Determir	ne Young's n	nodulus from th	ne graph.			
5.3	The ends of a copper rod with a cross-sectional area of 1,3 cm ² are he rigidly between two fixed points at a temperature of 30 °C. Young's modulu for copper is 1,28 x 10^{11} Pa. The coefficient of linear expansion for copper 17 x 10^{-6} /K.							
	Calculat	e the tensile	e force in the	e rod when the	temperature drops	s to 20 °C.		
QUEST	ION 7							
7.1	Conside	er Charles' la	aw and ansv	ver the followin	g questions:			
	7.1.1	Define C	charles' law.					
	7.1.2	Draw a t <u>y</u>	ypical graph	, representing	Charles' law.			
	7.1.3	Write a fo	ormula, repr	esenting Charl	es' law.			
7.2	pool is f	filled with w	ater at 25 °	ming pool is 1 C to within 5 ا ter is 207 x 10	0 m x 6 m x 1,8 mm of the overflow $^{-6}/K$.	m deep. The w of the pool.		
				•	ol will start to ov aporation, is ignor			
7.3	of a val The val	ve to anoth ve is open	er cylinder	containing 5 k	00 kPa, is connec g of air at 35 °C a n is allowed to r	and 200 kPa.		
	The gas	constant fo	or the air is 2	87 J/kg.K.				
	Calculat	e the follow	ving:					
	7.3.1	The volu	me of the se	cond cylinder				
	7.3.2	The final	equilibrium	pressure				

DIAGRAM SHEET

QUESTION 4.2

(15070434)

FORMULA SHEET

Any applicable formula may also be used.

$$\begin{split} S &= \frac{u + v}{2} \times t & a = aR & H.V. = \frac{F_p}{F_h} = M.A. \\ \hline \overline{V} &= \frac{s}{t} & v = \pi DN & AV = mgh = WD \\ v &= u + at & T = FR & Q = mc\Delta t \\ s &= ut + \frac{1}{2}at^2 & AV = T\theta = WD & \Delta l = l_a a\Delta t \\ v^2 &= u^2 + 2as & P = 2\pi NT & \beta = 2a \\ v_g &= \frac{u + v}{2} & P = Fv & \gamma = 3a \\ \omega &= 2\pi N & P = T\omega & \frac{P_iV_1}{T_1} = \frac{P_2V_2}{T_2} \\ \omega &= \frac{\theta}{t} & F_a = ma & PV = mRT \\ \theta &= \frac{\omega_2 + \omega_1}{2} \times t & E_p = mgh & \epsilon = \frac{x}{l} \\ \omega_2 &= \omega_1 + at & E_k = \frac{1}{2}mv^2 & E = \frac{\sigma}{\epsilon} \\ \theta &= \omega_1 t + \frac{1}{2}at^2 & P = F_A & \sigma = \frac{F_A}{A} \\ v &= \omega R & m = \rho \times vol & E = \frac{FI}{Ax} \\ \theta &= 2\pi N & P = \rho gh & y = \frac{A_iy_1 \pm A_2y_2 \dots}{A_1 \pm A_2 \dots} \\ S &= R\theta & \frac{W_r}{F_p} = \frac{D^2}{d^2} & \overline{y} = \frac{V_iy_1 \pm V_2y_2 \dots}{V_1 \pm V_2 \dots} \\ \alpha &= \frac{\omega_2^2 - \omega_1^2}{2\theta} & W.D. = P \times V = A.V. \end{split}$$