

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T530(E)(J29)T AUGUST EXAMINATION

NATIONAL CERTIFICATE

ENGINEERING SCIENCE N4

(15070434)

29 July 2016 (X-Paper) 09:00–12:00

This question paper consists of 6 pages and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ENGINEERING SCIENCE N4 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Keep subsections of questions together and rule off across the page after each section.
- 5. ALL formulae and calculations should be shown.
- 6. Answers should be in blue or black ink.
- 7. ALL diagrams should be done in pencil.
- 8. Determine the answers to THREE decimal places where necessary.

9. Take $g = 9.8 \text{ m/s}^2$.

10. Write neatly and legibly.

QUESTION 1

1.1 A ship that can cruise at 42 km/h in still waters sets course due south-west. It is driven off course by a current flowing West 22° North at a velocity of 7,2 km/h.

Calculate the following:

1.1.1	The resultant velocity in magnitude and direction.	(5)

- 1.1.2 The distance the ship will cruise in 5 hours. (1)
- 1.2 A bullet is fired at an angle of 29° to the horisontal at a velocity of 410 m/s.

Calculate the following:

- 1.2.1 The maximum height reached by the bullet. (2)
- 1.2.2 The horisontal displacement when the bullet hits the ground. (2)
- 1.3 Two vehicles start moving simultaneously at a fork in a road. Vehicle V travels at a speed of 125 km/h north-east. Vehicle W travels at 125 km/h directly east.

Calculate the velocity of vehicle W relative to the velocity of vehicle V in magnitude and direction. (5) [15]

QUESTION 2

2.1	Define the term angular displacement.	(2)

2.2 A point on the rim of a wheel with a diameter of 500 mm has a velocity of 200 km/h.

Calculate the following:

- 2.2.1The revolutions per minute (rev/min).(3)
- 2.2.2 The angular velocity in rad/s at which the wheel is turning. (2)
- 2.3 The engine of a vehicle develops 67 kW at a speed of 1 200 r/min.

Calculate the torque developed.

(2) **[9]**

(6) [**12**]

(2)

QUESTION 3

3.1	Define Newton's second law.					
3.2	A motor car with a mass of 850 kg accelerates uniformly from rest up a gradient of 1 in 40 and reaches a speed of 60 km/h after 4 minutes.					

Calculate the following:

3.2.1	The acceleration of the motor car.	(2)	
3.2.2	The kinetic energy of the motor car after 4 minutes.	(2)	

- 3.2.3 The gain in potential energy.
- **QUESTION 4**
- 4.1 Define the term *bending moment*.
- 4.2 A beam ABCDE is 8 m long and simply supported at the two ends as shown in the FIGURE below.

4.2.1	The reaction forces at A and E.	(3)

4.2.2 The bending moments at points B, C and D. (3)

4.2.3 Draw the shear force and bending moment diagrams and show ALL the main values on the two diagrams.

NOTE: NO marks will be allocated if the main values are NOT indicated on the diagrams. (7) [15]

QUESTION 5

5.1	State FOUR facts related to the pressure exerted by fluids or liquids.				
5.2	The following data refers to a single-acting hydraulic jack:				
	Diameter Diameter Plunger st Mechanic	of the ram= 510 mmof the plunger= 15 % diameter of the ramstroke length= 100 mmcal advantage on the lever= 25			
	Calculate	the following:			
	5.2.1	The force to be applied to the lever to lift a load of 5 tons if the s is 9%.	lip (5)		
	5.2.2	The number of pumping strokes needed to lift a load 410 mm there is no slip.	if (2)		
5.3	The plungers of a three-cylinder pump have diameters of 12 cm and a stroke length of 50 cm. The pressure during the delivery stroke is 1 000 kPa.				
	Calculate the following:				
	5.3.1	The power required to drive the pump at 350 r/min if the efficient of the motor is 90 %.	cy (5)		
	5.3.2	The volume of water delivered per minute in <i>l</i> /min if there is a sl of 13 %.	ip (4) [20]		
QUESTI	ON 6				
6.1	Name THREE types of stresses.				
6.2	A square aluminium bar is placed in tension by a force of 460 kN.				

Calculate the dimensions of the bar if the stress is not to exceed 32 MPa. (3)

6.3 The following readings were obtained in a tensile test on a mild steel bar:

	Load in k	N	2,3	9,2	18,4	27,6	36,8
	Extension	n in mm	0,0056	0,0246	0,0456	0,066	0,0896
	Gauge length = 61 mm Original diameter of the bar = 13,3 mm						
	6.3.1 Draw the load-extension graph for the given values.						(4)
	6.3.2	5.3.2 Determine Young's modulus of elasticity by means of the graph.					. (2)
	6.3.3 Calculate the percentage reduction in area if the diameter of the rod was 7,32 mm at the fracture.					the (2) [14]	
QUEST	ION 7						
7.1	Define Charles' law.					(2)	
7.2	What is the difference between the Kelvin scale and the Celsius scale?					(2)	
7.3	A steel plate with dimensions 80 cm × 40 cm × 20 cm is placed in an electrical furnace. The steel plate is heated from 37 $^{\circ}$ C to 410 $^{\circ}$ C. The coefficient of linear expansion of the steel plate is 19 × 10 $^{\circ}$ /°C.				rical nt of		
	Calculate the following:						
	7.3.1	The expansion in the length of the plate in cm.					(2)
	7.3.2 The area in mm ² of the 80 cm × 40 cm side at the temperature of 410 $^{\circ}$ C.						e of (3)
	7.3.3	The incr	ease in volum	e of the plate	in m ³ .		(3)
7.4	The volun	The volume of a gas is 0,493 m ³ at 73 $^{\circ}$ C and a pressure of 740 kPa.					
	Calculate the thermodynamic temperature of the gas if the volume is 0,0749 m ³ at a pressure of 1 300 kPa.				ə is (3) [15]		
						тот	'AL: 100

ENGINEERING SCIENCE N4

FORMULA SHEET

Any applicable formula may also be used.

