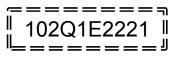


higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE


ENGINEERING SCIENCE N4

(15070434)

21 November 2022 (X-paper) 09:00–12:00

Drawing instruments and nonprogrammable calculators may be used.

This question paper consists of 6 pages, 1 formula sheet and 1 information sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE ENGINEERING SCIENCE N4 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Keep subsections of questions together.
- 5. Rule off across the page on completion of each section.
- 6. Show all formulae in the answers.
- 7. Show all calculations.
- 8. Draw all diagrams in pencil.
- 9. Round off all answers to THREE decimal places.
- 10. Take $g = 9,8 \text{ m/s}^2$.
- 11. Use only a black or a blue pen.
- 12. Write neatly and legibly.

QUESTION 1

1.1	A bullet is	s fired at a velocity of 400 m/s with an angle of projection of 20°.	_
	Calculate		
	1.1.1	The maximum height reached by the bullet.	(3)
	1.1.2	The horizontal range of the bullet.	(2)
1.2		cles start simultaneously at a fork in the road. Vehicle A travels North- 0 km/h and vehicle B travels West at 110 km/h.	
		e the velocity of vehicle A relative to the velocity of vehicle B in le and direction.	(6)
1.3		moving at 35 km/h North across a river that is 49 m wide. The river st at 5 m/s.	
×	Calculate	e the resultant velocity of the boat.	(4) [15]
QUESTI	ON 2		
2.1	Define ar	ngular acceleration.	(2)
2.2		of a truck has a diameter of 100 cm and accelerates from 6 rad/s to 14 3 seconds.	
	Calculate		
	2.2.1	The angular acceleration of the wheel	
	2.2.2	The angular displacement of the wheel in radians (2×2)	(4)
2.3		ctive diameter of a motorcar wheel is 600 mm. The motorcar is at 120 km/h.	
	2.3.1	Calculate the angular velocity of a point on the tread of the tyre.	
	2.3.2	Calculate the angular retardation if the motorcar is brought to rest with uniform reduction of speed from 120 km/h in 25 seconds. (2×2)	(4)
2.4	A wheel 37,704 ra	with a diameter of 0,6 m has an angular acceleration of	(• /
	If the mor	ment of inertia is 4 units, calculate the accelerating torque.	(2) [12]

QUESTION 3

- 3.1. Define *co-efficient* of friction.
- 3.2 A motorcar with a mass of 3,6 tonnes is at rest at the top of an incline of 1:30. The length of the incline is 42 m. A frictional force of 200 N is constant (uniform). The brakes are released and the car moves downwards due to the gravitational force, and then onto a horizontal road.

Calculate:

3.2.1	The velocity of the car at the bottom of the incline.	(6)
3.2.2	The force applied by the motorcar on the horizontal road.	(1)
3.2.3	The distance where the car will come to rest if it continues to travel on the horizontal road.	(3)
	the average power exerted by an engine if it can lift a mass of rough a distance of 10 m in 2 minutes.	(2) [14]

QUESTION 4

3.3

A light, horizontal beam, ABCDE, with A on the left-hand side is 26 m long. It is supported at two points, A and D. A point load of 20 kN is at B, 12 m from A. A point load of 30 is at C, 6 m from B. A uniform distributed load of 8 kN/m is between A and B. D is 4 m from C.

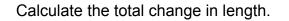
4.1.	Make a neat, labelled diagram of the beam as described above.	(1)
4.2	Calculate the reactions of the supports at points A and D and test your answers.	(5)
4.3	Draw a shear-force diagram and show ALL the main values on the diagram.	(4)
4.4	Calculate the bending moments at B and C.	(2)
4.5	Draw a neat bending-moment diagram and show ALL the main values on the diagram.	(3) [15]

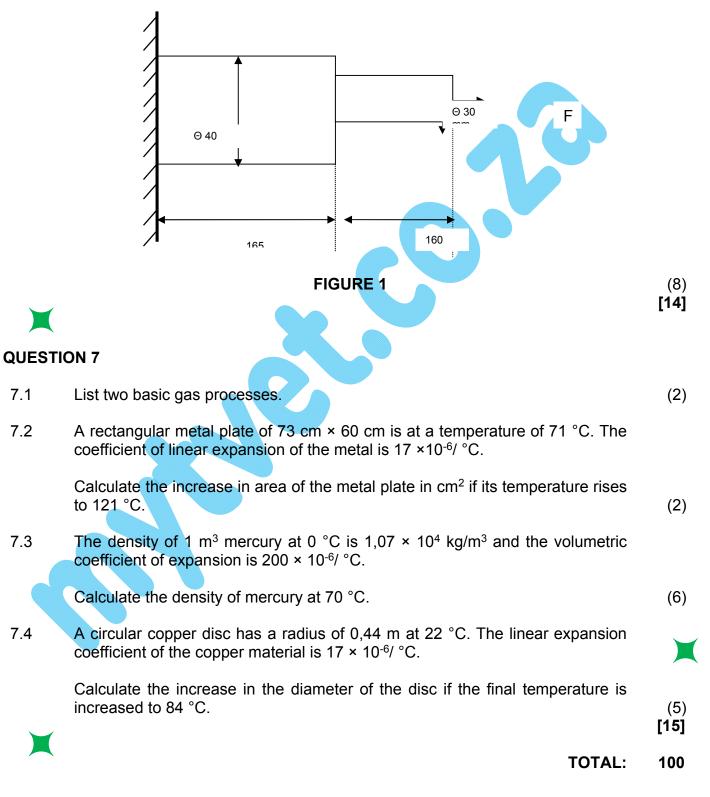
QUESTION 5

5.1	List any	THREE types of the accumulators.	(3)
5.2	of 650 kg	oaded accumulator has a ram with a diameter of 350 mm and a mass g. A hydraulic pressure of 1 MPa is required by the machine it serves. moves through a distance of 250 mm in 6 s during the working stroke achine.	
	Calculate	e:	
	5.2.1	The additional mass required to act as a weight in order to obtain the required hydraulic pressure.	(4)
	5.2.2	The work done by the ram during the working stroke of the machine it serves.	(2)
	5.2.3	The power transmitted by the ram during the working stroke of the machine it serves.	(2)
5.3		gers of a three-cylinder, single-acting pump has a diameter of 10 cm I stroke lengths of 15 cm each. The pressure during the delivery stroke	
		e the power required to drive the pump at 130 r/min if the efficiency of r is only 85%.	(4) [15]
QUEST	ION 6		
6.1	State Ho	ok's law and Young's modulus of elasticity.	(3)

6.2 The following readings were obtained from a tensile test on a mild steel bar at Modise Engineers Pty Ltd.

Load KN	0	2,5	9,87	17,27	24,7	32,1
Extension	0	0,0056	0,0246	0,0456	0,0666	0,0896


Gauge length = 56 mm Original diameter of the bar = 11,27 mm


Copy and complete the stress-strain table of the above information in exactly the following format:

$\sigma = MPa$ Load			
- (10-1)			
ε (×10 ⁻⁴)			

(3)

6.3 A steel bar which is axially loaded by a tensile load F, shown in FIGURE 1 below, causes a maximum stress of 120 MPa in the bar. Young's modulus is 200 GPa.

FORMULA SHEET

Any applicable formula may also be used.

$$\begin{split} S &= \frac{u+v}{2} \times t & a = \alpha R & H \cdot V = \frac{F_p}{F_h} = M \cdot A \cdot \\ \overline{V} &= \frac{s}{t} & v = \pi D N & A V = mgh = W D \\ v &= u + at & T = F R & Q = mc\Delta t \\ s &= ut + \frac{1}{2} at^2 & A V = T \theta = W D & \Lambda = l_{\theta} \alpha \Delta t \\ v^2 &= u^2 + 2as & P = 2\pi N T & \beta = 2\alpha \\ v_g &= \frac{u+v}{2} & P = F v & y = 3\alpha \\ \omega &= 2\pi N & P = T \omega & \frac{P_l V_1}{T_1} = \frac{P_2 V_2}{T_2} \\ \omega &= \frac{\theta}{t} & F_a = ma & P V = mR T \\ \theta &= \frac{\omega_2 + \omega_1}{2} \times t & E_p = mgh & \varepsilon = \frac{x}{l} \\ \omega_2 &= \omega_1 + \alpha t & E_k = \frac{1}{2}mv^2 & E = \frac{\sigma}{\varepsilon} \\ \theta &= \omega_l t + \frac{1}{2}\alpha t^2 & P = \frac{F}{A} & \sigma = \frac{F}{A} \\ v &= \omega R & m = \rho \times vol & E = \frac{Fl}{Ax} \\ \theta &= 2\pi n & P = \rho gh & \overline{y} = \frac{A_l y_1 \pm A_2 y_2 \dots}{A_l \pm A_2 \dots} \\ S &= R\theta & \frac{W_r}{F_p} = \frac{D^2}{d^2} & \overline{y} = \frac{V_l y_l + v_2 y_2 \dots}{v_1 \pm v_2 \dots} \\ \alpha &= \frac{\omega_2^2 - \omega_1^2}{2\theta} & W \cdot D \cdot = P \times V = A \cdot V \cdot \end{split}$$

INFORMATION SHEET

PHYSICAL CONSTANTS

QUANTITY	CONSTANTS	HOEVEELHEID
	KONSTANTE	
Atmospheric pressure	101,3 kPa	Atmosferiese druk
Density of copper	8 900 kg/m ³	Digtheid van koper
Density of aluminium	2 770 kg/m ³	Digtheid van aluminium
Density of gold	19 000 kg/m ³	Digtheid van goud
Density of alcohol (ethyl)	790 kg/m ³	Digtheid van alkohol (etiel)
Density of mercury	13 600 kg/m ³	Digtheid van kwik
Density of platinum	21 500 kg/m ³	Digtheid van platina
Density of water	1 000 kg/m ³	Digtheid van water
Density of mineral oil	920 kg/m ³	Digtheid van minerale olie
Density of air	1,0 <mark>5 kg</mark> /m ³	Digtheid van lug
Electrochemical equivalent of silver	1,118 mg/C	Elektrochemiese ekwivalent van silwer
Electrochemical equivalent of copper	0,329 mg/C	Elektrochemiese ekwivalent van koper
Gravitational acceleration	9,8 m/s ²	Swaartekragversnelling
Heat value of coal	30 MJ/kg	Warmtewaarde van steenkool
Heat value of anthracite	35 MJ/kg	Warmtewaarde van antrasiet
Heat value of petrol	45 MJ/kg	Warmtewaarde van petrol
Heat value of hydrogen	140 MJ/kg	Warmtewaarde van waterstof
Linear coefficient of expansion of copper	17 × 10⁻ ⁶ /°C	Lineêre uitsettingskoëffisiënt van koper
Linear coefficient of expansion of aluminium	23 × 10 ⁻⁶ /°C	Lineêre uitsettingskoëffisiënt van aluminium
Linear coefficient of expansion of steel	12 × 10 ⁻⁶ /°C	Lineêre uitsettingskoëffisiënt van staal
Linear coefficient of expansion of lead	54 × 10 ⁻⁶ /°C	Lineêre uitsettingskoëffisiënt van lood
Specific heat capacity of steam	2 100 J/kg.°C	Spesifieke warmtekapasiteit van stoom
Specific heat capacity of water	4 187 J/kg.°C	Spesifieke warmtekapasiteit van water
Specific heat capacity of aluminium	900 J/kg.°C	Spesifieke warmtekapasiteit van aluminium
Specific heat capacity of oil	2 000 J/kg.°C	Spesifieke warmtekapasiteit van olie
Specific heat capacity of steel	500 J/kg.°C	Spesifieke warmtekapasiteit van staal
Specific heat capacity of copper	390 J/kg.°C	Spesifieke warmtekapasiteit van koper