

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE

FITTING AND MACHINING THEORY N2

3 APRIL 2019

This marking guideline consists of 8 pages.

Please turn over

-2-FITTING AND MACHINING THEORY N2

SECTION A

QUESTION 1: OCCUPATIONAL SAFETY

- 1.1.2 False
 - 1.1.3 True
 - 1.1.4 False
 - 1.1.5 True

(5 × 1) **[5]**

OR

1.2	1.2.1	False

- 1.2.2 True
- 1.2.3 True
- 1.2.4 False
- 1.2.5 True

(5 × 1) **[5]**

QUESTION 2: COUPLINGS

2.1 A coupling connects the input and output shafts ✓ permanently.✓ (2)
2.2 2.2.1 Flexible coupling 2.2.2 Permanent/fixed coupling 2.2.3 Self-aligning coupling 2.2.4 Flexible coupling

> (4 × 1) (4) [6]

QUESTION 3: LIMITS AND FITS

3.1	 Provides standardisation and interchangeability of parts and is practical for economic purposes Allows for the acceptance of faulty machining and workmanship through certain limits 				
	AccCut	s production costs and delivery times	(4 × 1)	(4)	
3.2	3.2.1 3.2.2 3.2.3	85,10 mm 85, 10 mm 0,15 mm			
			(2, 1)	(2)	

(3 × 1) (3) **[7]**

QUESTION 4: BEARINGS

4.1	•	Point Line c	contact contact	(2 × 1)	(2)
4.2	A – B – C –	Radia Comb Axial I	dial load mbined load/Angular load ial load/Thrust load (3		(3) [5]
QUEST	ION (5: LUE	BRICATION AND VALVES		
5.1	•	Solids Liquid Semi-	s Is solids (grease)	(3 × 1)	(3)
5.2	•	To co To co	ntrol direction ntrol pressure	(3 × 1) (2 × 1)	(3)
5.3	Saf	fety va	lves protect the system from overload		(1) [6]
QUEST	ION (6: P/ S`	ACKING, STUFFING BOXES AND JOINTS AND WATE YSTEMS	ER PIPE	
6.1	Ster Ster Ster Ster	p 1: p 2: p 3: p 4: p 5:	Measure the circumference of the shaft and cut packing size. Remove the gland lock. Dip the packing rings into oil. Insert one packing at a time, push into place and ensure th are staggered at 120° to each other. Replace gland and tighten gland nuts evenly, ensuring strate and that the packing is gripped by the shaft.	rings to ne edges lightness (5 × 1)	(5)
6.2	•	They They	are not very stable. become brittle and damaged when exposed to UV rays.		

- They cannot be used with all types of acids.
- They cannot withstand high temperatures.

 (4×1) (4)

[9]

QUESTION 7: PUMPS

7.1	As the plunger lifts, the inlet valve opens, \checkmark the outlet valve closes and water is drawn into the cylinder. \checkmark As the plunger moves down, the inlet valve closes, the outlet valve opens \checkmark and the liquid is forced into the delivery pipe. \checkmark	(4)
7.2	Positive displacement	(1)

7.3 With each stroke of the plunger, a fixed amount of liquid is displaced. (1)

QUESTION 8: COMPRESSORS

- 8.1 Single-stage compressor
 - Multi-stage compressor
 - Single-acting compressor
 - Double-acting compressor

 $(Any 2 \times 1)$ (2)

[6]

8.2 The intercooler cools the air ✓ between the different stages in a multi-stage (2)
 [4]

QUESTION 9: V-BELTS, GEAR DRIVES, CHAIN DRIVES AND REDUCTION GEARBOXES

- 9.1 A Hard rubber outer casing
 - B Cords
 - $C Soft rubber (3 \times 1) (3)$
 - Guards should be fitted around gear drives.
 - Machine must be switched off before working on gear drives.
 - Ensure that gears mesh accurately.
 - Ensure that gears are properly fixed to the shaft.
 - Position gears in a way that makes replacement of parts easy.
 - $(Any 3 \times 1)$ (3)
- 9.3 It is suitable for short and long centre distance drives with light or heavy loads at low or high speeds.
 - Maintenance can be done without disturbing other components.
 - It has multiple drives on one chain. (3×1) (3)
- 9.4 9.4.1 To eliminate the use of very small gears
 - 9.4.2 To eliminate the use of very large gears

- (2×1) (2)
 - (1) **[12]**
- TOTAL SECTION A: 60

Drive gear

9.2

9.5

SECTION B

QUESTION 10: HYDRAULICS AND PNEUMATICS

- 10.1 10.1.1 Pressure build-up in a fluid gives energy to the fluid which is then transferred to the system.
 - 10.1.2 Mechanical components are lubricated by hydraulic oil passing through it.
 - 10.1.3 Through the circulation of hydraulic fluid heat is dissipated.

 (3×1) (3)

- 10.2 10.2.1 Reservoir
 - 10.2.2 Hydraulic pump
 - 10.2.3 Check valve
 - 10.2.4 Hydraulic motor
 - 10.2.5 Line/piping

 (5×1) (5)

- 10.3 10.3.1 It protects the system from excessive pressure.
 - 10.3.2 It alerts, generates or cancels signals for sensing, processing and controlling.

 (2×1) (2)

(2)

 (2×1)

- 10.4 Pressure
 - Volume/Area
- 10.5 10.5.1

10.5.3

 (3×1) (3)

(2)

- 10.6 A hydraulic system operates with oil ✓ whereas a pneumatic system operates with air. ✓
- 10.7 Check for leaks/cracks.
 - Check for kinks.
 - Check for perished rubber.

(3 × 1) (3) [**20**]

Please turn over

Copyright reserved

QUESTION 11: CENTRE LATHES

11.1	It is used for holding workpieces that have been already bored or reamed, for further machining.			(1)
11.2	UnderThe	er its own weight pressure of the cutting tool (2×1)		(2)
11.3	Set ofSet ofUse	over of the tailstock over of the compound slide the taper turning attachment	(Any 2 × 1)	(2)
11.4	11.4.1	$Lead = No. of starts \times Pitch of thread$ $= 2 \times 12$ $Lead = 24 mm \checkmark$		(1)
	11.4.2	$Depth = \frac{Pitch}{2}$ $= \frac{12}{2}$		
		$\frac{Depth = 6 \text{ mm}}{\sqrt{2}}$ Mean diameter (Dm) = Outside diamter - Depth = 85 - 6		
	11.4.3	$\frac{Mean\ diameter\ (Dm) = 79\ mm}{\sqrt{\pi}}$ $\tan \theta = \frac{Lead}{\pi Dm}$		(2)
		$=\frac{24}{\pi\times79}\checkmark$		
		$= 0,0967$ $\underline{\theta} = 5,523^{\circ} \ OR \ 5^{\circ} 31' \checkmark$		(2)
11.5	$S = \pi DN$			
	$N = \frac{S}{\pi D}$	\checkmark		
	$=\frac{2}{\pi \times 0}$	$\frac{22}{0,065}$ \checkmark		

 $\underline{N = 107,735 \, r/min} \checkmark$

Please turn over

(3)

11.6 S = 36 m/min $=\frac{36}{60}$ $S = 0.6 m/sec \checkmark$ $S = \frac{\pi DN}{60}$ $N = \frac{S \times 60}{\pi D} \checkmark$ $=\frac{0.6\times60}{\pi\times0.09}$ $S = 127,324 r/min \checkmark$ $T = \frac{L}{f \times N}$ $=rac{600}{0,75 imes127,324}$ \checkmark = 6,283 *min* $\underline{T = 6 \min 16 \sec} \checkmark$ (5) 11.7 Absolute dimensioning Incremental dimensioning (2 × 1) (2) [20] **QUESTION 12: MILLING MACHINES AND SURFACE GRINDERS** 12.1 12.1.1 Plain helical slab cutter 12.1.2 Side and face cutter

- 12.1.3 Dovetail cutter
- 12.1.4 T-slot cutter
- 12.1.5 End milling cutter

 (5×1) (5)

12.2 Indexing =
$$\frac{40}{N}$$

= $\frac{40}{12}$
= $3 \frac{4}{12} \checkmark$
= $3 \left[\frac{1}{3} \times \frac{17}{17}\right] \checkmark \text{ OR } 3 \left[\frac{1}{3} \times \frac{18}{18}\right] \text{ OR } 3 \left[\frac{1}{3} \times \frac{19}{19}\right] \text{ OR } 3 \left[\frac{1}{3} \times \frac{22}{22}\right]$
= $3 \frac{17}{51} \checkmark \text{ OR } = 3 \frac{18}{54} \text{ OR } = 3 \frac{19}{57} \text{ OR } = 3 \frac{22}{66}$

$$Indexing = 3 full turns of the crank handle and 17 holes in a 51 hole plate.$$

Other possible answers:

Indexing = 3 full turns of the crank handle and 18 holes in a 54 hole plate. Indexing = 3 full turns of the crank handle and 19 holes in a 57 hole plate.Indexing = 3 full turns of the crank handle and 22 holes in a 66 hole plate.

12.3
$$V = \pi DN$$

$$N = \frac{V}{\pi D} \checkmark$$

$$=\frac{35}{\pi\times0,060}\checkmark$$

 $\underline{N = 185,681 \, r/min}$

 $f = f_t \times T \times N$

 $= 0.09 \times 12 \times 185.681$

$$\underline{f = 200.54 \, mm/min} \checkmark \tag{5}$$

- 12.4 12.4.1 Surface grinder
 - 12.4.2 A Workpiece
 - B Horizontal spindle
 - C Magnetic table
 - D Grinding wheel

(4 × 1) (4) [20]

(1)

TOTAL SECTION B: 40 GRAND TOTAL: 100

(5)