

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE

FITTING AND MACHINING THEORY N2

(11022032)

4 April 2023 (X-paper) 09:00–12:00

Drawing instruments and nonprogrammable calculators may be used.

This question paper consists of 8 pages and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE FITTING AND MACHINING THEORY N2 TIME: 3 HOURS MARKS: 100

NOTE: If you answer more than the required number of questions, only the required number will be marked. Clearly cross out ALL work you do NOT want to be marked.

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions in SECTION A, except for QUESTION 1 where you must answer either QUESTION 1.1 **OR** QUESTION 1.2.
- 2. Answer only TWO questions from SECTION B.
- 3. Read all the questions carefully.
- 4. Number the answers according to the numbering system used in this question paper.
- 5. Start each section on a new page.
- 6. Use only a black or a blue pen.
- 7. Write neatly and legibly.

SECTION A

QUESTION 1: OCCUPATIONAL SAFETY

Answer only QUESTION 1.1 **OR** QUESTION 1.2.

State FIVE precautionary measures to be taken into account when working on electrical equipment.

OR

1.2 State FIVE precautions that must be adhered to in preventing underground fires.

QUESTION 2: COUPLINGS

2.1 List THREE main groups into which couplings are classified. (3)
2.2 Name THREE types of coupling misalignment. (3)

QUESTION 3: LIMITS AND FITS

3.1 FIGURE 1 below shows the dimensions of the slide fit of a shaft into a bush.

(5)

(5) **[5]**

[6]

3.2	A shrink	fit between a shaft and a coupling is given as 120 H7 - g6.	
	State w	hat is meant by the following symbols regarding this fit:	
	3.2.1	The capital letter H	
	3.2.2	The number 7	
	3.2.3	The small letter g	
	3.2.4	The number 6 (4 x 1)	(4) [7]
QUEST	ION 4: BE	ARINGS	
List FI	/E causes	of overheating in plain bearings.	[5]
QUEST	ION 5: LU	BRICATION AND VALVES	
5.1	Name T	HREE lubricating devices associated with the gravity-feed principle.	(3)
5.2	Explain	the lubrication term burning point.	(1)
5.3	State T	WO functions of valves used in fluid power systems.	(2) [6]
QUEST	ION 6: PA	CKING, STUFFING BOXES, JOINTS AND WATER-PIPE SYSTEMS	
6.1	List TW	O factors to consider when choosing jointing materials.	(2)
6.2	List THI seals in	REE important guidelines to ensure the proper fittings of O-rings and hydraulic systems.	(3)
6.3	State Fo	OUR advantages of using plastic piping.	(4) [9]

QUESTION 7: PUMPS

- 7.1 Explain the function of a pump.
- 7.2 FIGURE 2 shows a sketch of a gear pump.

- 7.2.1 Name the FOUR parts of the pump labelled (A–D). Write only the answers next to the letter (A-D) in the ANSWER BOOK.
- 7.2.2 State whether the gear pump is a positive displacement pump or a negative displacement pump.

QUESTION 8: COMPRESSORS

			F 43
Explain the operating	n principle of a	Single-stroke reciprocating air compressor	141
Explain the operating	g principio oi u		[7]

QUESTION 9: V-BELTS, CHAIN DRIVES, GEAR DRIVES AND REDUCTION GEARBOXES

	TOTAL SECTION A:	60
0.0		[12]
95	Explain the term reduction gearing	(2)
9.4	List FOUR disadvantages of chain drives.	(4)
9.3	State THREE advantages of gear drives compared to V-belt drives.	(3)
9.2	What is the name given to the pulley fitted to the motor of a V-belt installation?	(1)
9.1	State TWO safety precautions to be observed when working on belt drives.	(2)

(4)

(1) **[6]**

SECTION B

Answer only TWO questions from this section.

QUESTION 10: PNEUMATICS AND HYDRAULICS

- 10.1 Name the TWO most important factors in the functioning of a pneumatic system.
- 10.2 Identify the ISO hydraulic symbols below. Write only the answer next to the question number (10.2.1–10.2.5) in the ANSWER BOOK.

(2)

(2)

system.

10.6	Make ne pneumat	at, freehand sketches of the ISO symbols representing the following ic components:	
	10.6.1	Compressor	
	10.6.2	Air receiver	0
	10.6.3	Pneumatic motor (3 × 1)	(3)
10.7	List the ⁻ system.	THREE checks to be done on hoses when maintaining a pneumatic	(3) [20]
QUESTIC	ON 11: CE	ENTRE LATHE	
11.1	Name T\	NO types of steadies that are used on the centre lathe.	(2)
11.2	One met	hod used to cut tapers on the lathe is the compound slide method.	
	11.2.1	State THREE advantages of using this method.	(3)
\mathbf{O}	11.2.2	State THREE disadvantages of using this method.	(3)
11.3	Explain t	he following terms applicable to CNC machining:	
	11.3.1	Incremental programming	
	11.3.2	Absolute programming	
	11.3.3	G-commands	
	11.3.4	M-commands (4 × 1)	(4)
11.4	A two-sta	art screw thread with a 6 mm pitch must be cut on a lathe. Assume the e angle to be 4°.	0
	Calculate	e the following if the average diameter is 90 mm:	
	11.4.1	The helix angle (θ) of the thread.	(4)
	11.4.2	The lead angle of the cutting tool.	(2)
	11.4.3	The following angle of the cutting tool.	(2) [20]

QUESTION 12: MILLING MACHINES AND SURFACE GRINDING

12.1 Name the FIVE types of milling processes indicated in FIGURE 3 below. Write only the answers next to the question number (12.1.1–12.1.5) in the ANSWER BOOK.

- 12.2 Calculate the cutting speed of the cutter, in metres per minute, when using a cutter with a 40 mm diameter at a speed of 320 revolutions per minute.
- 12.3 Calculate the indexing to cut SIX sides on the end of a shaft by using the following indexing methods:
 - 12.3.1 Rapid indexing, using a 24-hole index plate (use 24/N).
 - 12.3.2 Simple indexing, using the Brown and Sharp Index Plate 3.

		THE BROWN AND SHARP DIVIDING HEAD						
	Number of holes							
		Plate 1	15	16	17	18	19	20
		Plate 2	21	23	27	29	31	33
		Plate 3	37	39	41	43	47	49
12.4	Give FOUR reasons for chatter marks on a workpiece.							
12.5	Explain the grinding-wheel term grit size.							

TOTAL SECTION B:40GRAND TOTAL:100

(2)

(3)

FORMULA SHEET

- 1. $f = ft \times T \times N$
- 2. $S = \frac{\pi DN}{60}$
- 3. $S = \pi DN$
- 4. $\frac{40}{N}$
- 5. $\frac{N}{9^{\circ}}$
- 6. Setover = $\frac{D-d}{2} \times \frac{\text{length of workpiece}}{\text{length of taper}}$
- 7. $\tan \frac{\theta}{2} = \frac{X}{L}$
- 8. Leading angle = 90° (helix angle + clearance angle)

- 9. Following angle = 90° + (helix angle clearance angle)
- 10. Lead = number of starts \times pitch

