

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE (VOCATIONAL)

SUPPLEMENTARY EXAMINATION 2013

FITTING AND TURNING NQF LEVEL 2

14 MARCH 2013

This marking guideline consists of 7 pages.

Copyright reserved

Please turn over

QUESTION 1

1.1	1.1.1	D√
-----	-------	----

- 1.1.2 A√
- 1.1.3 E √
- 1.1.4 G√
- 1.1.5 C√
- 1.1.6 J√
- 1.1.7 B√
- 1.1.8 I√
- 1.1.9 F√

1.1.10 H√

1.2 • To define the shape. $\sqrt{}$

- To show the exact position of the hole. $\sqrt{}$
- To keep wastage of material to a minimum. $\sqrt{}$
- To allow the fitter and turner to set up the work correctly. $\sqrt{}$

ANY TWO OF THE ABOVE (2)

(10)

- 1.3 A scriber- to scribe lines on a metal or plastic $\sqrt{}$
 - A divider- to draw circles and radii on a workpiece. $\sqrt{}$
 - A trammel- to draw dig circles. $\sqrt{}$
 - A centre punch- to punch the centre for the hole. $\sqrt{}$
 - A dotting punch- to mark a line with a series of small dents. $\sqrt{}$
 - A jenny calliper- to find the centre of a circle. $\sqrt{}$
 - A steel ruler- to mark off specific lengths. $\sqrt{}$
 - A tape- to measure lengths. $\sqrt{}$
 - A G-clamp to clamp a workpiece against an angle plate. $\sqrt{}$
 - A V-block- to support a round shaft for marking off. √
 - A surface gauge- to scribe lines parallel to specific surface gauge. √

ANY THREE OF THE ABOVE (3)

- 1.4 Drive a piece of lead or hardwood into the hole of the flange and coat it with a suitable marking medium. $\sqrt{}$
 - Find the centre of the flange with the aid of jenny callipers and coat it with a suitable marking medium. \checkmark
 - Set the divers to a radius of 50 mm and scribe the 100 mm pitch-circle diameter. \surd

- With a steel ruler and a scriber, scribe the line across the face of the flange to pass through the centre. \surd
- Scribe a second line at a right angle to the first line to also pass through the centre. \checkmark
- Mark the centre point O. $\sqrt{}$
- Divide half of the datum line into four equal parts and add one extra part to the datum line produced from O to A. \checkmark
- Join A and B and from the centre O, scribe OC parallel to AB to set the position. \checkmark
- Dot mark the seven centres with a dotting punch. $\sqrt{}$
- Set the dividers to the radius of the required size holes and scribe the seven circles. \checkmark
- Dot mark four dots on the outside of each circle with a dotting punch. $\sqrt{}$

ANY THREE OF THE ABOVE

(3) **[18]**

QUESTION 2:

- 2.1 1. Overall length $\sqrt{}$
 - 2. Shank√
 - 3. Body√
 - 4. Heel√
 - 5. Hand√
 - 6. Body clearance√
 - 7. Flute√
- 2.2 Study and interpret the instructions of the job and on the engineering drawings. \surd
 - Inspect the work area. $\sqrt{}$
 - Work out the calculations. $\sqrt{}$
 - Fit the drill bit. $\sqrt{}$
 - Select the drill speed. $\sqrt{}$
 - Clamp the workpiece. $\sqrt{}$
 - Do the drilling. $\sqrt{}$

ANY FIVE OF THE ABOVE (5)

- If the machined workpiece matched the specifications in the
- engineering drawings and job card. $\sqrt{}$
- The drill bit that you used. $\sqrt{}$
- Any problems that you experienced while drilling. $\sqrt{}$
- If you completed a quality check on the workpiece and measuring instruments that you used. \checkmark
- If any malfunctions happened during the drilling process. $\sqrt{}$

2.3

(7)

-4-FITTING AND TURNING L2

QUESTION 3

3.1	 The vertical milling machine√ Drills holes in workpieces. √ Machines flat surfaces on metal plates. √ Cuts slots and keyways on solid round shafts.√ Bores jigs and templates to use for making large quantities of components.√ 	(2)
	 The plain horizontal milling machine√ Cuts slots into workpieces. √ Cuts spear gears with straight teeth. √ Does gang milling. 	(2)
	 The universal milling machine√ Does helical milling√ Cutting spiral flutes on a drill bit. √ Cutting spline shafts. √ ANY ONE OF THE ABOVE USES FOR EACH ONE 	(2)
3.2	$S = \pi \times D \times N$ N = 28/\pi \times 0,14 = 63,662 r/min	
	$f = f_t \times T \times N$ = 0,051 × 24 × 63,662 = 77,922 N	(5)
3.3	 If the machine starts to make strange noises, the bearings of the spindle may be worn. √ It the machine table vibrates, the machine slides are worn. √ If the spindle heats up, the oil seals are leaking and the spindle bearings are dry, which causes friction between the revolving spindle and surface of the bearing. √ 	
3.4	 Telescopic gauge√ Vernier calliper√ Inside micrometer√ 	(3) [17]

-5-FITTING AND TURNING L2

QUESTION 4

4.1	• • •	Check the engineering drawing and the job card. $$ Check the tools and equipment. $$ Check the condition of the surface-grinding machine. $$ Practise workshop safety. $$	(4)
4.2	A. B. C. D. E. F.	Wheel $$ Washer $$ Spindle nut $$ Outer flange $$ Inner flange $$ Spindle $$	(6)
4.3	4.3.1	True√	
	4.3.2	False√	
	4.3.3	True√	
	4.3.4	False√	
	4.3.5	False√	(5)
4.4	•	If the wheel is not heavy, you can suspend it from the hole on a screwdriver handle or on your finger. $$ Place heavier wheels upright on a clean, hard floor. $$ Tap the wheel gently with a non-metal tool such as a wooden screwdriver handle for light wheels and $$	

- A wooden mallet for heavy wheels. $\sqrt{}$
- The best spot to tap a wheel for the ring test is about 45 mm on either • side of a line drawn upright through the centre and about 25 mm to 50 mm from the outside edge, depending on the size. $\sqrt{}$
- Rotate a wheel after 45°, tap it and listen to the sound. If it makes a . muffled sound it has cracks. $\sqrt{}$

ANY FIVE OF THE ABOVE

(5) [20]

QUESTION 5

- 1. Driving plate√ 5.1
 - 2. Driving pin $\sqrt{}$
 - 3. Carrier√
 - 4. Lathe tailstock $\sqrt{}$
 - 5. Workpiece√

(5)

(3)

(5)

(3)

5.2 $S = \pi \times D \times N$

5.3 S = 15 m/min

$$= 15/60 \text{ m/sec}$$

= 0,25 m/sec √

D = 60 mm

- $S = \pi D N/60 \sqrt{10}$
- N = S x 60/ π x D $\sqrt{}$
 - $= 0, 25 \times 60/\pi \times 0,06 \sqrt{100}$
 - = 79,787 r/min √

 $T = L/f \times N$

- = 340 mm/0,15 x 79,787 $\sqrt{}$
- = 28,409 minutes $\sqrt{}$
- = 28 minutes 24 seconds $\sqrt{}$

5.4

- Turn the lever on the apron that controls the automatic feed of the carriage to engage the feed. \surd
 - The carriage is now moving along the length of the workpiece. $\sqrt{}$
 - The cutting tool machines the outside diameter of the workpiece to the required length at the same time. \checkmark
- 5.5 If the machined workpiece matched the specifications in the engineering drawings and job card. $\sqrt{}$
 - The cutters that you used. $\sqrt{}$
 - Any problems that you experienced during machining. $\sqrt{}$
 - If you completed a quality check on the workpiece and checked the measuring instruments that you used $\sqrt{}$.
 - If any malfunctions happened on the milling machine during the machining process. \checkmark

ANY TWO OF THE ABOVE (2)

[18]

QUESTION 6

- 6.1 A welding hood $\sqrt{}$
 - Leather gloves√
 - A leather apron $\sqrt{}$
 - Leather shoes/spats $\sqrt{}$

(4)

-7-FITTING AND TURNING L2

- 6.2 The welding methods that you used $\sqrt{}$
 - The base material $\sqrt{}$
 - The filler material $\sqrt{}$
 - The flux material $\sqrt{}$
 - The design of the joint $\sqrt{}$

- ANY FOUR OF THE ABOVE (4)
- 6.3 Check if there is enough light. $\sqrt{}$
 - Check if you have enough space. $\sqrt{}$
 - Check if you have enough ventilation. $\sqrt{}$
 - Check if the floor is dry. $\sqrt{}$

- ANY TWO OF THE ABOVE (2)
 - [10]
 - TOTAL: 100