higher education & training Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA # MARKING GUIDELINE **NATIONAL CERTIFICATE (VOCATIONAL)** # FITTING AND TURNING NQF LEVEL 3 1 March 2024 This marking guideline consists of 7 pages. HIGHER EDUCATION AND TRAINING PRIVATE BAG X110 2024 -03- -- PRETORIA 0001 LEFAPHA LATHUTO E KGOLWANE LETHUPELELO Approved 202403 DHET marking Guide. No amendments or additions Must be made on this guide #### -2-FITTING AND TURNING L3 ## **QUESTION 1: BEARINGS** - 1.1 Reduces friction - Helps the machine to run more efficiently - Reduces mechanical breakdown - Extends the life of the machinery - Reduces abrasive/frictional wear $(Any 4 \times 1) \qquad (4)$ - Used where starting torques are high - Gives a warning by becoming noisy when they begin to fail - Can be prepacked and sealed with a lubricant such as grease - Can support a combination of both radial and axial loads - Lasts longer - Generates low friction - Easy to replace - Requires very little maintenance - Maintains high rotational speeds - Requires little axial space $(Any 4 \times 1) \qquad (4)$ 1.3 (3) - Flaking of metal on the outer surface - Corrosion on all parts of the bearing - Wear on the rolling elements - Microcracks on the surfaces of the inner and outer races - Grooves on the races and rolling elements - Burn holes on the races and rolling elements $(Any 4 \times 1)$ (4) [15] #### -3-FITTING AND TURNING L3 #### **QUESTION 2: COUPLINGS** 2.1 Angular misalignment: There is angular misalignment when the center lines ✓ of two shafts are crossed at an angle ✓. The presence of strong axial vibration ✓ at a rotational speed characterizes this type of misalignment. Parallel Misalignment: Parallel misalignment happens when the two shafts to be aligned have center lines parallel ✓ to each other, but the center lines are offset. ✓ ✓ (2 × 3) (6) - Straight edge and feeler gauge method - · Rim and face method - Reverse indicator method - Laser method (4)[10] ## **QUESTION 3: BRAKES AND CLUTCHES** - 3.1 3.1.1 Flywheel - 3.1.2 Clutch plate with asbestos lining - 3.1.3 Pressure plate - 3.1.4 Release bearing - 3.1.5 Spring $(5 \times 1) \qquad (5)$ - They can be initially expensive to purchase. - They must be manually adjusted for wear. (2) - Electromagnetic brakes - Hydraulic brakes - Air-operated brakes - Mechanical brakes - Disc brakes - Thruster brakes - Drum brakes $(Any 3 \times 1)$ (3) [**10**] #### -4-FITTING AND TURNING L3 # **QUESTION 4: BELT DRIVES, CHAIN DRIVES AND GEAR DRIVES** 4.1 A – angle of contact B – driven pulley C – driver pulley D – idler pulley $(4 \times 1) \qquad (4)$ 4.2 • Multiple roller chain - Double-pitch roller chains - Silent chains - Leaf chains or lifting chains - · Cranked lift chains - Conveyor chains $(Any 3 \times 1) \qquad (3)$ 4.3 • Manual lubrication - Drip lubrication - Disc lubrication - Oil-bath lubrication - Oil-stream lubrication $(Any 3 \times 1) \qquad (3)$ 4.4 4.4.1 False 4.4.2 False 4.4.3 True 4.4.4 False 4.4.5 True (5 × 1) (5) **[15]** #### -5-FITTING AND TURNING L3 # **QUESTION 5: PIPES, PIPE FITTINGS AND VALVES** 5.1 Screw-threaded joints Welded joints Butt and strap joints Bell and spigot joints Flanged joints (6) Threaded unions 5.2 Controls/Regulates flow Controls volume Controls pressure · Controls direction of flow Acts as an on/off device $(Any 4 \times 1)$ (4) [10] **QUESTION 6: CENTRE LATHES** 6.1 In noisy areas use ear protection in the form of ear plugs Long hair should be tied back or secured under a hair net Do not use loose clothing • Use safety glasses with side shield 6.2 D = 50 mm = 50/1 000 = 0,05 m S = ? m/min N = 800 r/min $S = \pi \times D \times N$ $= \pi \times 0.05 \times 800 \checkmark \checkmark$ = <u>125,664 m/min</u>√ 6.3 6.3.1 Facing means to square out the face of the workpiece or to clean the face of the workpiece. (1) • Facing stock held in the chuck Use dust mask or respirator in dusty areas Facing stock held between centres 6.4 • HSS cutting tools Brazed tip tools • Tip tools (Any 2 × 1) (2) (5) (3) (2) 6.5 • Facing DrillingBoring Parallel turningTaper turning ## -6-FITTING AND TURNING L3 | | Grooving Thread cutting Parting off Profile turning Knurling Chamfering (Any 5 × 1) | (5) | |--------|--|--------------------| | 6.6 | When the machine is switched on, open the tap on the coolant pipe and direct the coolant flow onto the cutting tool and workpiece. ✓ The coolant keeps the cutter and the workpiece cool when cutting and washes away the cutting chips/shavings. ✓ | (2)
[20] | | QUESTI | ON 7: MILLING MACHINES | | | 7.1 | Workpiece coming loose on the milling machine or clamping device Cutting tools becoming blunt or break during machining Lack of coolant which may cause the cutter or workpiece to overheat Electrical faults Insufficient oil in the machine | (5) | | 7.2 | Isolate the machine (power off). Remove all tools and equipment from the machine. Use a brush to sweep chips off the machine. Use a soft cloth to wipe away coolant splashes and spills. Apply a thin layer of oil on the machine slides and components. | (5) | | 7.3 | SolidSplit | (2) | ## MARKING GUIDELINE # FITTING AND TURNING L3 7.4 $D = 50 \text{ mm} = 50/1\ 000 = 0.05 \text{ m}$ S = 30 m/min ft = 0.06 mm/tooth T = 6 teeth $S = \pi \times D \times N$ $N = S/\pi \times D$ $= 30/\pi \times 0.05 \checkmark \checkmark$ = 190,986 r/min✓ $f = fl \times T \times N$ $= 0.06 \times 6 \times 190.986 \checkmark \checkmark$ = 68,755 mm/min✓ (6) 7.5 Micrometers Vernier calipers • Dial test indicators $(Any 2 \times 1)$ (2) [20] TOTAL: 100