

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE (VOCATIONAL)

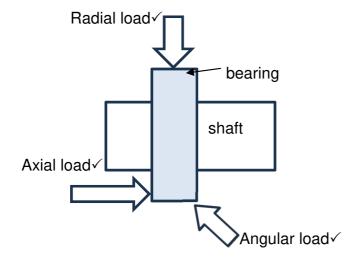
FITTING AND TURNING NQF LEVEL 3

1 March 2024

This marking guideline consists of 7 pages.

-2-FITTING AND TURNING L3

QUESTION 1: BEARINGS


- 1.1 Reduces friction
 - Helps the machine to run more efficiently
 - Reduces mechanical breakdown
 - Extends the life of the machinery
 - Reduces abrasive/frictional wear

 $(Any 4 \times 1)$ (4)

- Used where starting torques are high
 - Gives a warning by becoming noisy when they begin to fail
 - Can be prepacked and sealed with a lubricant such as grease
 - Can support a combination of both radial and axial loads
 - Lasts longer
 - Generates low friction
 - Easy to replace
 - Requires very little maintenance
 - Maintains high rotational speeds
 - Requires little axial space

 $(Any 4 \times 1) \qquad (4)$

1.3

(3)

- Flaking of metal on the outer surface
 - Corrosion on all parts of the bearing
 - Wear on the rolling elements
 - Microcracks on the surfaces of the inner and outer races
 - Grooves on the races and rolling elements
 - Burn holes on the races and rolling elements

 $(Any 4 \times 1) \qquad (4)$

[15]

Copyright reserved

FITTING AND TURNING L3

QUESTION 2: COUPLINGS

2.1 Angular misalignment: There is angular misalignment when the center lines✓ of two shafts are crossed at an angle√. The presence of strong axial vibration√ at a rotational speed characterizes this type of misalignment.

> Parallel Misalignment: Parallel misalignment happens when the two shafts to be aligned have center lines parallel√ to each other, but the center lines are offset.√✓ (2×3)

- 2.2 Straight edge and feeler gauge method
 - Rim and face method
 - Reverse indicator method
 - Laser method (4)[10]

QUESTION 3: BRAKES AND CLUTCHES

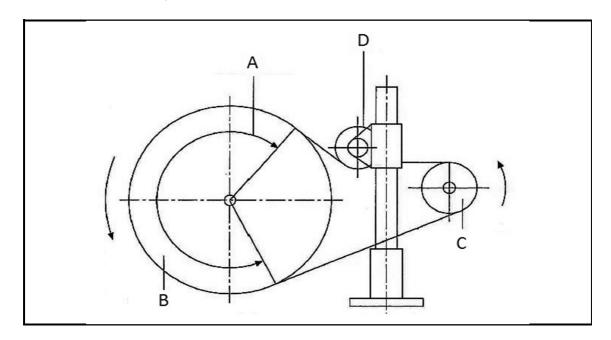
- 3.1 3.1.1 Flywheel
 - 3.1.2 Clutch plate with asbestos lining
 - 3.1.3 Pressure plate
 - 3.1.4 Release bearing
 - 3.1.5 Spring

 (5×1) (5)

- 3.2 They can be initially expensive to purchase.
 - They must be manually adjusted for wear.

(2)

(6)


- 3.3 Electromagnetic brakes
 - Hydraulic brakes
 - Air-operated brakes
 - Mechanical brakes
 - Disc brakes
 - Thruster brakes
 - Drum brakes $(Any 3 \times 1)$ (3)

Copyright reserved Please turn over

[10]

QUESTION 4: BELT DRIVES, CHAIN DRIVES AND GEAR DRIVES

4.1

- A angle of contact
- B driven pulley
- C driver pulley
- D idler pulley

 $(4 \times 1) \qquad (4)$

- 4.2 Multiple roller chain
 - Double-pitch roller chains
 - Silent chains
 - Leaf chains or lifting chains
 - Cranked lift chains
 - Conveyor chains

 $(Any 3 \times 1) \qquad (3)$

- 4.3 Manual lubrication
 - Drip lubrication
 - Disc lubrication
 - Oil-bath lubrication
 - Oil-stream lubrication

 $(Any 3 \times 1) \qquad (3)$

- 4.4 4.4.1 False
 - 4.4.2 False
 - 4.4.3 True
 - 4.4.4 False
 - 4.4.5 True

 (5×1) (5) [15]

-5-FITTING AND TURNING L3

QUESTION 5: PIPES, PIPE FITTINGS AND VALVES

• Screw-threaded joints

- Welded joints
- Butt and strap joints
- Bell and spigot joints
- Flanged joints

• Threaded unions (6)

• Controls/Regulates flow

- Controls volume
- Controls pressure
- Controls direction of flow
- Acts as an on/off device (Any 4 × 1) (4) [10]

QUESTION 6: CENTRE LATHES

- In noisy areas use ear protection in the form of ear plugs
 - Long hair should be tied back or secured under a hair net
 - Do not use loose clothing
 - Use safety glasses with side shield
 - Use dust mask or respirator in dusty areas (5)

6.2 $D = 50 \text{ mm} = 50/1 \ 000 = 0.05 \text{ m}$

S = ? m/min

N = 800 r/min

 $S = \pi \times D \times N$

 $= \pi \times 0.05 \times 800 \checkmark \checkmark$

= <u>125,664 m/min</u>√

6.3 Facing means to square out the face of the workpiece or to clean the face of the workpiece. (1)

• Facing stock held in the chuck

• Facing stock held between centres (2)

(3)

6.4HSS cutting tools

- Brazed tip tools
- Tip tools $(Any 2 \times 1)$ (2)

Facing

6.5

-6-FITTING AND TURNING L3

	 Parallel turning Taper turning Drilling Boring Grooving Thread cutting Parting off 	
	 Profile turning Knurling 	
	• Chamfering (Any 5 x 1)	(5)
6.6	When the machine is switched on, open the tap on the coolant pipe and direct the coolant flow onto the cutting tool and workpiece. ✓ The coolant keeps the cutter and the workpiece cool when cutting and washes away the cutting chips/shavings. ✓	(2) [20]
QUES ⁻	TION 7: MILLING MACHINES	
7.1	 Workpiece coming loose on the milling machine or clamping device Cutting tools becoming blunt or break during machining Lack of coolant which may cause the cutter or workpiece to overheat Electrical faults Insufficient oil in the machine 	(5)
7.2	 Isolate the machine (power off). Remove all tools and equipment from the machine. Use a brush to sweep chips off the machine. Use a soft cloth to wipe away coolant splashes and spills. Apply a thin layer of oil on the machine slides and components. 	(5)
7.3	SolidSplit	(2)

-7-FITTING AND TURNING L3

7.4 $D = 50 \text{ mm} = 50/1 \ 000 = 0.05 \text{ m}$

S = 30 m/min

ft = 0.06 mm/tooth

T = 6 teeth

 $S = \pi \times D \times N$

 $N = S/\pi \times D$

 $= 30/\pi \times 0.05 \checkmark \checkmark$

= 190,986 r/min√

 $f = ft \times T \times N$

 $= 0.06 \times 6 \times 190.986 \checkmark \checkmark$

= 68,755 mm/min✓

(6)

7.5 • Micrometers

Vernier calipers

• Dial test indicators

 $(Any 2 \times 1)$ (2)

[20]

TOTAL: 100