SYNCHRONOUS Drive Failure Analysis This chart is designed to more accurately identify and troubleshoot synchronous drive problems and failures. Flange Failure **Tooth Shear** Flanges can be forced off by belts due to drive misalignment or improper flange attachment. Realign the drive and replace the sprocket. **8**^{\&} **Tensile Break** **Land Area Worn** **Unusually Loud Drive** ## **Worn Sprockets** Sprocket grooves wear due to length of service, misalignment, debris, drive overloading, or improper belt tensioning. If a ridge can be detected between the worn and unworn areas of the groove, the sprocket should be replaced. | | Symptom | Probable Cause | Corrective Action | |-----------|-----------------------------|--|--| | *1 | Delamination | (1) Excessive shockload. (2) Less than 6 teeth in mesh. (3) Extreme sprocket run-out. (4) Worn sprockets. (5) Backside idler. (6) Incorrect sprocket groove profile. (7) Misaligned drive. (8) Belt undertensioned. | (1) Redesign to manufacturer's recommendations. (2) Redesign drive to manufacturer's recommendations. (3) Replace sprocket. (4) Replace sprocket. (5) Use inside idler. (6) Use proper belt/sprocket combination. (7) Realign drive. (8) Retension to manufacturer's recommendations. | | 2 | Tracking | (1) Misaligned drive.(2) Center distance exceeds 8X small sprocket diameter. | (1) Realign drive.(2) Redesign drive or realign existing drive. | | 3 | Excessive Belt
Edge Wear | (1) Misaligned belt drive. (2) Damage due to belt mishandling. (3) Flange damage. (4) Belt too wide for sprocket. (5) Rough flange surface finish. (6) Improper belt tracking. (7) Belt rubbing against guard or drive structure. | (1) Realign drive. (2) Follow proper handling instructions. (3) Repair flange or replace sprocket. (4) Use proper belt width for sprocket. (5) Replace or repair flange. (6) Realign drive. (7) Remove obstruction or realign drive. | | 4 | Excessive
Tooth Wear | (1) Belt tension too low or too high. (2) Belt running partly off unflanged sprocket. (3) Misaligned drive. (4) Incorrect belt/sprocket match. (5) Worn, rough, or damaged sprocket. (6) Belt rubbing against drive bracketry. or other obstruction. (7) Excessive load. | (1) Retension to manufacturer's recommendations. (2) Realign drive. (3) Realign drive. (4) Use proper belt/sprocket combination. (5) Replace sprocket. (6) Remove obstruction or alter belt path. (7) Redesign drive to manufacturer's recommendations. | | | Symptom | Probable Cause | Corrective Action | |---|-----------------------|--|--| | 5 | Tensile Break | (1) Crimp failure-improper belt handling and storage prior to installation. | (1) Follow proper handling and storage procedures. | | | | (2) Excessive shockload. | (2) Redesign drive to manufacturer's recommendations. | | | | (3) Sub-minimal diameter. | (3) Redesign drive to use larger sprockets. | | | | (4) Debris or foreign object in drive. | (4) Protect drive. | | | | (5) Extreme sprocket run-out. | (5) Replace sprockets. | | | | (6) Too low or too high belt tension. | (6) Retension to manufacturer's recommendations. | | 6 | Tooth Shear | (1) Excessive shockload. | (1) Redesign drive to manufacturer's recommendations. | | | | (2) Less than 6 teeth in mesh. | (2) Redesign drive to manufacturer's recommendations. | | | | (3) Extreme sprocket run-out. | (3) Replace sprocket. | | | | (4) Worn sprockets. | (4) Replace sprocket. | | | | (5) Backside idler. | (5) Use inside idler. | | | | (6) Incorrect sprocket groove profile.(7) Misaligned drive. | (6) Use proper belt/sprocket combination.(7) Realign drive. | | | | (8) Belt undertensioned. | (8) Retension to manufacturer's recommendations. | | | | (0) Delt undertensioned. | (0) Heterision to mandiacturer 3 recommendations. | | | Land Area Worn | (1) Excessive tension. | (1) Retension to manufacturer's recommendations. | | | | (2) Excessive sprocket wear. | (2) Replace sprocket. | | _ | | (3) Debris in sprockets. | (3) Eliminate and guard against debris. | | | Unusually | (1) Incorrect belt/sprocket match. | (1) Use proper belt/sprocket match. | | 8 | Loud Drive | (2) Incorrect tension. | (2) Retension to manufacturer's recommendations. | | | LUUU DIIVE | (3) Worn sprockets. | (3) Replace sprockets. | | | | (4) Debris in sprockets. | (4) Eliminate and guard against debris. | | | | | | ## Helpful preventive maintenance tools...for every application!