

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE (VOCATIONAL)

NOVEMBER EXAMINATION

FITTING AND TURNING NQF LEVEL 4

30 NOVEMBER 2015

This marking guideline consists of 8 pages.

Copyright reserved

Please turn over

-2-FITTING AND TURNING L4

QUESTION 1: PUMPS

1.1	 Ensure that the correct safety devices are installed. Do not operate the pump while valve inlets and outlets are closed. Do not use the pump for any other purpose than for which it was designed. Do not start the pump without priming it first or checking that it is primed. (Any 2 x 1) 	(2)
1.2	 An impeller with curved vanes, which is immersed in fluid, is rotated. Fluid flows in at the inlet towards the impeller centre. The impeller rotates and forces the fluid to move outwards along the impeller's vanes. This centrifugal force increases the pressure and velocity at the outlet. (4 x 1) 	(4)
1.3	1.3.1 Some centrifugal pumps contain a diffuser which converts some of the liquid's velocity into flow pressure.	
	1.3.2 It prevents leakages from pumps. (2 x 1)	(2)
1.4	 To prevent accidental operation until necessary maintenance is carried out To prevent possible injuries to workers To prevent further damage to the machine 	
	(Any 2 x 1)	(2) [10]
QUES	TION 2: COMPRESSORS	

QUEU			
2.1	2.1.1	Rotary screw, vane compressor, reciprocating compressor, lobe	

compressor

2.1.2	Single-stage	centrifugal	compressor,	multi-stage	centrifugal	
	compressor,	single-stage	reciprocating	compressor,	multi-stage	
	reciprocating compressor		(Any ONE example)		(1)	

- 2.2.1 A positive displacement compressor forces atmospheric air into a chamber through a one-way intake valve.
 - As the chamber volume decreases during rotation, it places the air under pressure, making it compressed.

(2)

(1)

- 2.2.2 • A negative displacement compressor has impellers which, as they spin, create a centrifugal force that accelerates and then decelerates the captured air.
 - The acceleration and deceleration of the captured air pressurises it.

(Any ONE example)

(2)

2.3	 Check and replace oil filters if necessary. Check oil levels and top up if necessary. Check operating temperatures. Check the condition and tension of drive belts. 				
	 Clean air/oil coolers. 	(Any 2 x 1)	(2)		
2.4	Removes moistureCools air	(2 x 1)	(2) [10]		

QUESTION 3: HYDRAULICS AND PNEUMATICS

- 3.1 3.1.1 В F
 - 3.1.3 D 3.1.4 А
 - 3.1.5 С

- (5 x 1) (5)
- 3.2 • Leakage of hydraulic fluid which can cause damage to the eyes, intoxication and risk of slipping
 - Excessive noise which can damage hearing
 - Electrical shock
 - Accidental machine movement which can cause severe injury (Any 2 x 1) (2)
- 3.3 • An electric motor converts electrical energy into mechanical energy to run a compressor.
 - The compressor, through mechanical movement, converts mechanical energy into potential energy in the storage of the compressed air.
 - The actuator converts potential energy into mechanical energy. (3 x 2) (6)

3.4 • Pressure source

- Service unit
- Throttle valve
- Directional control valves
- Linear and rotary actuators
- Pressure gauges
- Regulator valves
- Flow control valves
- Piping

(Any 4 x 1) (4)

3.1.2

- 3.5 Pneumatic systems operate under pressurised air, while hydraulic systems operate under pressurised liquid.
 - Pneumatic systems work in an open-ended circuit, which means the air is released into the atmosphere, while hydraulic systems work on a closed circuit where the fluid is directed back to the reservoir.
 - Pneumatic systems require a larger cylinder than hydraulic systems to produce the same output as a hydraulic system.
 - Pneumatic systems use a low-pressure fluid in comparison to hydraulic systems.
 - Pneumatic systems are much faster than hydraulic systems.
 - Pneumatic systems can operate under very high temperatures while hydraulic systems cannot.
 - Hydraulic systems are self-lubricating whereas pneumatic systems require a lubricant for their moving parts.
 - Pneumatic systems are more suitable for fire-risk areas whereas hydraulic systems can be very dangerous in fire risk areas.
 - Operating costs of pneumatic systems are much lower than operating costs of hydraulic systems. (Any 3 x 1)

(3) **[20]**

QUESTION 4: SURFACE GRINDING

4.1	4.1.1 4.1.2	E C		
	4.1.3	A		
	4.1.4	В		
	4.1.5	D	(E × 4)	(5)
			(5 x 1)	(5)
4.2	4.2.1	Insufficient coolant		
		 Grinding wheel too hard or too soft 		
		Cut is too heavy		
		 Table feed is too slow 	(Any 2 × 1)	(2)
			(/ lig Z × 1)	(2)
	4.2.2	 Increase the flow of the coolant. 		
		Use a softer or harder wheel depending on mater	ial.	
		Take smaller or lighter cuts.		
				(0)
		 Dress the grinding wheel more often. 	(Any 2 × 1)	(2)
4.3	To prev	vent tiny pieces of metal, grinding grains or grit o	r coolant from	
	•	ng the eyes or to protect the eyes.		(1)
	uunuyi			(')

(1) **[10]**

Copyright reserved

-5-FITTING AND TURNING L4

QUESTION 5: CENTRE LATHES

5.1	 Centres Carrier Carrier pin 	(3)
5.2	 Material must be ready. Decide on the machine and clamping method Set machine to correct feeds and speeds. Select tools. Verify the quality checks with the supervisor or person in charge. (Any 3 x 1) 	(3)
5.3	$S = \P \times D \times N$ $20 = \P \times 0.65 \times N \checkmark$ $N = \frac{20}{\P \times 0.65}$ $= \frac{9.793}{60} \checkmark$	
	$= 0.163 \text{ r/s}$ \checkmark	(3)
5.4	5.4.1Oil, Paraffin or oil-based substance5.4.2To prevent corrosion(2 x 1)	(2)
5.5	Vernier height gauge, dial test indicator or surface height gauge (any 1 x 1)	(1) [12]

-6-FITTING AND TURNING L4

(3)

(3)

(4)

[12]

QUESTION 6: MILLING MACHINES

6.1 • Spindle speed
• Tool diameter
• Feed rate
• Cut depth
• Surface cutting speed (Any 3 x 1)
6.2
$$S = \P \times D \times N$$

 $N = S$
 $\P \times D$
 $= 21$
 $\P \times 0,06$
 $= 111.39 \text{ r/min}$ \checkmark
 $f = ft \times T \times N$
 $= 0,06 \times 8 \times 111.39 \checkmark$
 $= 53.47 \text{ mm/min}$ \checkmark
6.3 Indexing $= \frac{40}{N}$
 $= \frac{40}{100}$
 $= 2$
 5×4
 $= 5 \times 4$
 $= 5 \times 4$
 $= 6$
 $15 \checkmark$
Answer = 0 full turns of the crank handle, 6 holes on a 15- hole circle
from plate 1. \checkmark

- To ensure that all the specifications, dimensions, tolerances and shapes for specific milling jobs are met.
 - To make sure that defects are not repeated.
 - To minimise the risk of injuries and related incidents. (Any 2 x 1) (2)

QUESTION 7: CNC LATHES AND MILLING

7.1	 Acquire the correct material in the correct size and quantity as the drawing. Decide how the work-piece will be clamped. Set the machine to the correct feeds and speeds. Select the correct equipment and tools. Determine the machining process. When the job is done, isolate the machine from the electrical s 		
	 Clean the work area and the machine. 	(Any 3 x 1)	(3)
7.2	M-command (M-code)G-command (G-code)	(2 x 1)	(2)
7.3	 The quantity of components that must be manufactured The tolerance needed for the component The type of surface finish The diameter variations that can influence the tool selection 	(Any 2 x 1)	(2)
7.4	 Activate the desired programme that has to be altered. Ensure that the program protect key is switched to the off posit Scroll to the information that has to be changed. Type in the correct value on the keypad. Press ALTER on the keypad to change the value. 	tion. (5 x 1)	(5)
7.5	$MMP = \frac{m/\min}{N \times FL}$ = $\frac{60}{820 \times 4}$ \checkmark = $0,0183 \text{ mm}$ \checkmark		(2)
7.6	 Set the geometry offsets. Increase the workshift offset so that all motion occurs aw chuck. Set machine lock OFF and dry run ON. All machine functions must be active. Set feed rate override switch to minimum. 		(4)

-8-FITTING AND TURNING L4

- 7.7 7.7.1 By running the programme block by block (one line at a time) (1) 7.7.2 • Set the geometry offsets. • Set the workshift in the correct position. • Set all functions for normal machine execution. • For safety, set the feed rate override switch to minimum. • Check the distance-to-go value to detect potential motion errors. (5 x 1) (5) 7.8 This is to make a reference point on the component which is then identified as the work-piece zero. The work-piece zero is used as a reference from which all the other dimensions are taken. (2) [26]
 - TOTAL: 100