

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE (VOCATIONAL)

SUPPLEMENTARY EXAMINATION 2013

MACHINE MANUFACTURING NQF LEVEL 3

12 MARCH 2013

This marking guideline consists of 7 pages.

Copyright reserved

Please turn over

SECTION A

QUESTION 1

1.1	False ✓	(1)
1.2	True ✓	(2)
1.3	True ✓	(1)
1.4	False ✓	(1)
1.5	True ✓	(1)
1.6	True ✓	(1)
1.7	False ✓	(1)
1.8	True ✓	(1)
1.9	False ✓	(2)
1.10	False ✓	(2)
1.11	True ✓	(1)
1.12	False ✓	(1) [15]

QUESTION 2

- 2.1 Some programs are expensive
 - Initial costs of hardware can be high
 - Heavy computing power is required
 - CAD packages are complicated and take some time to learn
 - $(ANY TWO \checkmark \checkmark) \qquad (2)$
- 2.2 CAD is a computer package that can be used not only for drawing but also for design and manufacture. ✓

It is also to draw two-dimensional and three-dimensional drawings. \checkmark

Some programmes are designed such that they can calculate stress in materials and structures and can be used for CNC programming. \checkmark (3)

2.3	2.3.1	True ✓	(1)
	2.3.2	False ✓	(1)
	2.3.3	True ✓	(1)
	2.3.4	True ✓	(1)
	2.3.5	True ✓	(1)
2.4	2.4.1	Construction line – produces a line through two points and has infinite length \checkmark	(1)
	2.4.2	Rectangle – used to draw a rectangle or a square in which the sides are vertical or horizontal \checkmark	(1)
	2.4.3	Trim – it allows you to trim or cut an object exactly at the edge defined by another object or line \checkmark	(1)
2.5	C	Dotting punch	(1)
	C	Centre punch	(1) [15]
		TOTAL SECTION A:	30

SECTION B

QUESTION 3

3.1	3.1.1	50.00 ✓	(1)
	3.1.2	50.03 🗸	(1)
	3.1.3	50.03 🗸	(1)
	3.1.4	0.06 🗸	(1)
	3.1.5	49.97 ✓	(1)

-4-MACHINE MANUFACTURING L3 NC1630(E)(M12)V

3.2	3.2.1	45 - Nominal size ✓	(1)
	3.2.2	H - Tolerance on the hole \checkmark	(1)
	3.2.3	7 - Grade of the tolerance of the hole \checkmark	(1)
	3.2.4	g - Tolerance on the shaft \checkmark	(1)
	3.2.5	6 - Grade of the tolerance of the shaft \checkmark	(1)
3.3	Interna	ational Standards Organization	(1)
3.4	Manuf help th	acturing industry needs an international acceptable system which will em facilitate manufacturing in terms of exports and imports $\checkmark\checkmark$	(2)
3.5	Counte	ersink Counter bore	
			(2) [15]
QUES	TION 4		
4.1	• Cu	tting lip angles are symmetrical to the centre of the drill bit	
	• Cu	tting lip lengths are equal	
	• Sw	arf coming out of each flute are evenly spaced (ANY TWO ✓✓)	(2)
4.2	4.2.1	Too high ✓	(1)
	4.2.2	Too low ✓	(1)
	4.2.3	Correct height ✓	(1)
4.3	• Gra mo	aduated handwheel – its accuracy depends on the state or condition of ving slide, tailstock, carriage and compound slide \checkmark	
	 DR imp 	O – have various options such as switching between metric and perial, memory and calculation function	
	• DRO – enable the user of the machine to read the position of the tool at any		
	роі	(ANY ONE OF DRO ✓)	(2)
Copyriç	ht reserve	ed Please turn o	over

-5-MACHINE MANUFACTURING L3

 \checkmark

(2)

(2)

4.4 4.4.1

- 4.5 Keep the cutting tool and workpiece cool
 - Allows higher cutting speed
 - Increases the lifespan of the cutting tool
 - Imparts a smooth finish
 - Productivity increases
 - Washes away chips and cuttings

 $(ANY FIVE \checkmark \checkmark \checkmark \checkmark \checkmark) \tag{5}$

- 4.6 Tool should be set slightly below the centre and overhang be small as possible
 - The speed should be reduced to about half the turning speed and be fed by hand and not automatic
 - Parting should be so close to the chuck as possible
 - Use lots of coolant
 - · Slowly advance the parting tool into the workpiece
 - Again advance the parting tool so that it penetrates a distance equal to its length
 - Repeat the above until the workpiece is separated.

 $(ANY FOUR \checkmark \checkmark \checkmark \checkmark) \qquad (4)$

[20]

QUESTION 5

5.1 5	5.1.1	CENTRE LATHE	MILLING MACHINE
		It is clamped by means of chuck and the chuck key either a 3-jaw chuck or a 4-jaw chuck. ✓	It is clamped on machine vice with parallels underneath or is clamped by means of dividing lead. Sometimes depending on type of machining to be done a set of clamps with nuts and bolts \checkmark

5.1.2 **CENTRE LATHE** MILLING MACHINE H.S.S. is ground to angles and The cutting tool is bolted on the used for cutting using lots of machine spindle and set at coolant/cutting oil to keep the tool required speed. There are cool. ✓ different types of cutters e.g. end mill, slot drill. ✓

- (2 \
	<u> </u>

(5)

(2)

5.1.3	CENTRE LATHE	MILLING MACHINE	
	A footbrake is used. ✓	A handbrake is used. ✓	(2)

- 5.2 Indexing = N/9 degrees \checkmark
 - = 35/9 🗸
 - = 3 and 8/9, therefore 8/9 x 3/3 = 24/27 \checkmark
 - = 3 full turns + 24 holes on a 27-hole circle plate $\checkmark \checkmark$
- 5.3 He needs to decide what operation must be started first and how the work-piece is to be held \checkmark
 - The type of material to be used \checkmark
 - Must decide on the type of cutter to be used i.e. end mill/slot drill 🗸
 - If grinding is involved, how much provision for excess material ✓
 - Select all measuring tools i.e. verniers, micrometers \checkmark
 - Do calculations and work out the required speeds and feeds ✓
- 5.4 Drill bit improperly grounded \checkmark
 - Too much heavy feed ✓
 - Drill is clogged with chips \checkmark
 - Insufficient coolant being used \checkmark
 - Incorrect coolant being used \checkmark
 - Blunt drill bit ✓

(6)

-7-MACHINE MANUFACTURING L3

- 5.5 A adjuster ✓
 - B travelling steady ✓
 - C support ✓
 - D workpiece \checkmark
 - $E carriage \checkmark$ (5)
- 5.6 A motor ✓
 - B head \checkmark
 - C table ✓
 - D saddle ✓
 - E knee ✓
 - $\mathsf{F}-\mathsf{column}\,\checkmark$
 - G base ✓

(7) **[35]**

TOTAL FOR SECTION B: 70

GRAND TOTAL: 100