

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T1130(E)(N22)T

NATIONAL CERTIFICATE

MECHANOTECHNOLOGY N3

(<mark>819</mark>0373)

22 November 2018 (X-Paper) 09:00–12:00

This question paper consists of 7 pages, 1 formula sheet and 4 tables.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

(4)

(4) [**20**]

1.2

QUESTION 1: POWER TRANSMISSION

1.1 A 16 N SPB wedge belt is fitted between an electrical motor and a hammer mill.

Consider the following information when performing the necessary calculations:

Design power of the supplying electric motor	48 kW
Basic power per belt	22 kW
Power increment (additional power) per belt	1,90 kW
Type of start	'soft'
Duty operation type	'medium'
Operational hours per day	9 hours
Speed of the electric motor pulley	1 450 r/min
Service factor	1,2
Correction factor	0,85

Calculate the following:

1.1.1	The power supplied by the electric motor in kW.	(2)
1.1.2	The corrected power per belt in kW.	(3)
1.1.3	The number of belts	(3)
A wedge	belt is designed as an improvement of the V-belt.	
State FO V-belt.	UR design aspects of a wedge belt that serve as improvement of the	(4)

1.3 Study FIGURE 1 below, showing the different components of a basic chain, and answer the question that follows:

FIGURE 1

Label the different parts A–D in FIGURE 1. Write the answer next to the letter (A–D) in the ANSWER BOOK.

1.4 State FOUR advantages of a worm and worm wheel gear system.

-4-

T1130**(E)**(N22)T

(2) **[11]**

OUESTION 2. BRAKES

QUESI	ION 2. DR	ARES	
State F	IVE disadv	antages of a cone brake.	[5]
QUEST	ION 3: BE	ARINGS	
3.1	State FIV	'E factors that can cause a bearing to vibrate and make noise.	(5)
3.2	State FO	UR advantages of guide bearings.	(4)
3.3	Give ON	E disadvantage of guide bearings.	(1) [10]
			[]
QUEST	ION 4: WA	TER PUMPS, COOLING AND LUBRICATION	
4.1	Describe	the reciprocating movement in reciprocating pumps.	(2)
4.2	State TH	REE main moving elements found in a centrifugal pump.	(3)
4.3	Discuss t	he working principle of a dry sump lubrication method.	(3)
4.4	State FO	UR reasons for cooling internal combustion engines.	(4)
4.5	Explain th	ne working principle of an indirect cooling system.	(3) [15]
			[13]
QUEST	ION 5: HY	DRAULICS AND PNEUMATICS	
5.1	State Pas	scal's law on fluid.	(2)
5.2	A force is designed	s exerted on a fluid, causing a pressure of 550 MPa within a cylinder with a diameter of 160 mm.	
	Calculate	e the following:	
	5.2.1	The magnitude of the force in the cylinder. Express your answer in kN.	(2)
	5.2.2	The total volume occupied if the master cylinder is connected to three identical slave cylinders each with a 90 mm diameter piston and travelling a distance of 40 mm.	(3)
5.3	The prest from the t	sure relief valve, also known as a safety valve, is used to reduce air tank to maintain the minimum required pressure in the system.	
	Draw a re	easonable symbol of a pressure relief valve.	(2)

Draw a reasonable	symbol of a	pressure relief	valve.

5.4 State ONE function of the actuator of a pneumatic systems

QUESTION 6: INTERNAL COMBUSTION ENGINES

Refer to FIGURE 2 below, showing different strokes of a four-stroke petrol engine, and answer the question.

FIGURE 2

Name the different strokes A–D in FIGURE 2. Write the answer next to the letter (A–D) in the ANSWER BOOK.

[4]

QUESTION 7: CRANES AND LIFTING MACHINES

7.1 Refer to FIGURE 3 below, showing a sketch of a wharf crane, and answer the question.

FIGURE 3

Label the different parts	A–D in FIGURE 3. Write	e the answer next to the letter	
(A–D) in the ANSWER I	BOOK.		(4)
State FOUR possible ca	auses of accelerated wea	ar in steel ropes.	(4)
			[8]

QUESTION 8: MATERIALS AND MATERIAL PROCESSES

8.1	Discuss treatment	the difference between hardening and normalising through heat	(4)
8.2	State the	difference between ferrous and non-ferrous metals.	(2)
8.3	Name the	e colour code for each of the following metals	
	8.3.1.	Structural steel	(1)
	8.3.2.	Pipeline steel	(1) [8]

7.2

-7-

QUESTION 9: INDUSTRIAL ORGANISATION AND PLANNING

9.1	State FOUR channels that are generally used for downward communication.	(4)
9.2	Briefly explain the purpose of the Labour Relations Act (No. 66 of 1995).	(4)
9.3	State FOUR functions of a clock card in a workplace.	(4) [12]

QUESTION 10: ENTREPRENEURSHIP

10.1	Define an <i>entrepreneur.</i>	(4)
10.2	Entrepreneurs play a key role in the development of the South African economy.	
	State THREE important roles played by entrepreneurs in South Africa.	(3) [7]
	TOTAL:	100

MECHANOTECHNOLOGY N3

FORMULA SHEET

Any applicable formula may also be used.

- 1. Design power = Power (electrical motor) × service factor
- 2. Corrected power per belt = (basic power per belt + power increment per belt) × correction factor
- 3. Belt length (L) = [(Pitch diameter of larger pulley + Pitch diameter of smaller pulley) $\times 1,57$] + (2 × Centre Distance)
- 4. Force $(F) = Pressure (P) \times Area (A)$
- 5. Work done (W) = Force (F) × Distance (s)
- 6. Volume (V) = Area of base (A) × Perpendicular height $(\bot h)$

SERVICE FACTORS FOR THE SELECTION OF WEDGE BELTS

	TYPES OF PRIME MOVERS												
	'S	Soft' starts		'He									
	Hours	s per day di	uty	Hours per day duty									
TYPES OF DRIVEN MACHINES	10 and	Over 10	Over	10 and	Over 10	Over							
	under	to 16	16	under	to 16	16							
Class 1 – Light duty													
Blowers and fans	1.0		1.0		4.0	1.0							
Centrifugal compressors and pumps	1,0	1,1	1,2	1,1	1,2	1,3							
Belt conveyors (uniformly loaded)													
Class 2 – Medium duty													
Blowers and fans													
Rotary compressors and pumps	1,1	1,2	1,3	1,2	1,3	1,4							
Belt conveyors (not uniformly loaded)													
Generators													
Class 3 – Heavy duty													
Brick machinery													
Compressors and pumps													
(reciprocating)	1,2	1,3	1,4	1,4	1,5	1,6							
Conveyors (heavy duty)													
Hammer mills													
Punches and presses													
Class 4 – Extra heavy duty													
Crushers	1,3	1,4	1,5	1,5	1,6	1,8							
Mills													

CENTRE DISTANCES FOR 16 N SPB WEDGE BELT DRIVES

Combine	ed arc and	d belt lengt		0,8				0,85			0,	9		1.05				
Correctio	on factor																	
Speed	Pitch diameter of pulleysPower per belt kW					BELT LENGTH												
Ratio	Driver	Driven	960 r/min	1 440 r/min	1 260	1 340	1 410	1 590	1 800	1 900	2 020	2 150	2 280	2 400	4 560	4 820	5 070	5 380
1,69	236	400	11,94	16,56	-	-	-	-	392	443	504	570	635	696	1 779	1 909	2 034	2 189
1,75	160	280	6,45	8,92	278	319	355	446	551	602	662	727	792	852	-	-	-	-
1,75	180	315	7,92	11,00		273	309	401	507	557	618	683	748	809	-	-	-	-
1,78	200	355	9,38	13,03	-	-	-	351	458	508	569	635	700	760	1 843	1 973	2 098	-
1,79	140	250	4,95	6,80	319	360	395	486	591	641	702	767	832	892	-	-	-	-
1,79	224	400	11,10	15,41	-	-	-	-	400	452	513	578	644	705	1 788	1 918	2 043	2 198

CENTRE DISTANCES FOR 22 N SPC WEDGE BELT DRIVES

Combined arc and belt length						0,80			0,85				0,90	0,95				
Correction																		
	Pitch diameter of Power per belt																	
Speed	pu	lleys	k	W	DELIL	ENGIN												
Ratio	í.	i.	960	1 440					0.500	0.050		0.000		0.050	0.550	0.750	4	1.050
	Driver	Driven	r/min	r/min	2 000	2 120	2 240	2 360	2 500	2 650	2 800	3 000	3 150	3 350	3 550	3 750	4 000	4 250
1,58	400	630	37,85	49,15	-	-	-	-	-	-	580	682	758	859	960	1 060	1 186	1 311
1,58	300	475	25,19	33,63	-	443	504	565	636	711	787	887	963	1 063	1 163	1 264	1 389	1 514
1,58	224	355	14,82	19,80	542	602	662	723	793	868	943	1 043	1 119	1 219	1 319	1 419	1 544	1 669
1,59	315	500	27,16	36,17	-	-	471	532	603	679	755	855	931	1 031	1 131	1 232	1 357	1 482
1,59	236	375	16,50	22,09	516	576	637	697	767	842	918	1 018	1093	1 193	1 293	1 394	1 519	1 644
1,60	250	400	18,44	24,71	484	545	605	666	736	811	887	987	1 062	1 162	1 263	1 363	1 488	1 613
1,60	500	800	49,26	-	-	-	-	-	-	-	-	-	-	-	739	841	968	1 094

MINIMUM PULLEY DIAMETER (mm)

Speed of	of Minimum pulley diameter (mm)																			
faster		Design Power (kW)																		
shaft r/min	Up to 1	3,0	4,0	5,0	7,5	10	15	20	25	30	40	50	60	75	90	110	130	150	200	250
500	67	90	100	112	125	140	180	200	212	236	250	280	280	315	375	400	450	475	500	560
600	67	85	90	100	112	125	140	180	200	212	224	250	265	280	300	335	375	400	475	500
720	67	80	85	90	90	106	132	150	160	170	200	236	250	265	280	300	335	375	450	500
960	67	75	80	85	95	100	112	132	150	180	180	200	224	250	280	280	300	335	400	450
1 200	67	71	80	80	95	95	106	118	132	150	160	180	200	236	236	250	265	300	335	355
1 440	67	67	75	80	85	85	100	112	125	140	160	170	190	212	236	236	250	280	315	335
1 800	67	67	71	75	80	85	95	106	112	125	150	160	170	190	212	224	236	265	300	335
2 800	67	67	67	67	80	80	85	90	100	112	125	140	160	170	180	212	224	236	-	-