

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE

MECHANOTECHNOLOGY N3

2 AUGUST 2019

This marking guideline consists of 6 pages.

Please turn over

-2-MECHANOTECHNOLOGY N3

QUESTION 1: POWER TRANSMISSION; CLUTCHES AND COUPLING OF SHAFTS

1.1	1.1.1	D = 355 mm and d = 200 mm		(1)
	1.1.2	$L = [(D + d) \times 1,57] + correction factor$		
		$= [(355+200) \times 1,57] + (2 \times 760)\checkmark$		
		= 2 391,35√½ mm√½		(2)
	1.1.3	CF = 0,9 (Table)		(1)
	1.1.4	$P_{D} = Pm \times SF$ = 15 × 1,1 × = 16,5 × 1/2 kW × 1/2		(2)
1.2	1.2.1	To determine the increase in belt size so that is suitable duty demand	for the	
	1.2.2	To take up slack in the belt To increase the angle of contact.	(2 × 1)	(2)
1.3	Refers to	o the slackness/movement of the belt		(1)
1.4	 Positive clutch Friction clutch Centrifugal clutch Hydraulic clutch 			(4)
1.5	 Low operating costs (economical) Range of speed variations Smooth and quiet in operation Simple design Protected against overloads 			(5)
1.6	• Muff			
	• Flang	ge		(2) [20]

QUESTION 2: BRAKES

- Dust is not easily thrown out.
- It is difficult to cool the drum.
- When too hot, the brake drum expands excessively.
- Brake friction causes wear on the inside of the drum.
- Brake drums are too large, therefore difficult to handle.
- Due to heat, the braking efficiency diminishes at high temperatures

(Any 5 × 1) [5]

QUESTION 3: BEARINGS

3.1	3.1.1	Double direction thrust ball bearing	(1)
	3.1.2	Axial loads	(1)
	3.1.3	A – Housing ring B – Ball and cage trust assembly C – Centre ring	(3)
3.2	 Speed Space Acting Nature Magnit 	of operation available around the bearing direction of load and size of misalignment between shaft and housing tude of load	(5) [10]
QUES	TION 4: WA	TER PUMPS, COOLING AND LUBRICATION	
4.1	 Keeps Reduct Prolor Absor Reduct Preve Keeps Servet Reduct 	the engine cooled ces noise in engine parts ngs the engine life-span bs shocks between the engine parts ces the power loss nts welding and seizure the engine clean s as a sealant ces oxidation and rust (Any 5 × 1) (5)
4.2	In direct o directly√	cooling the heat from the combustion process (engine) is transferred from the cylinder/s to the fins \checkmark around the cylinder.	t
	In indirec circulating the air flo	et cooling the heat from the engine is transferred to the water g around it. The water goes through a radiator \checkmark where it is cooled b w (or a fan). \checkmark	√ ру (5)
4.3	 As a require Water 	result of the water pump a smaller volume of cooling water ed. flow rate is improved.	is
	The si	ze of the radiator is reduced.	(4) [14]

QUESTION 5: HYDRAULICS

5.1 5.1.1 $p = \frac{F}{A}\checkmark$ $F = p \times \frac{\pi \times d^2}{4}$ $F = 680 \times 10^3 \times \frac{\pi \times (0,2)^2}{4} \checkmark$ $= 23,363 \text{ kN }\checkmark$

5.1.2 $V = AL n \checkmark$ $= \frac{\pi}{4} x (0,02)^2 x 0,05 x 3 \checkmark$ $= 0,00471 \checkmark \frac{1}{2} m^3 \checkmark \frac{1}{2}$

5.2 Atmospheric pressure Applied pressure 5.3 Pressure relief valve

- Flow control valve
- Directional control valve (3)
- 5.4

		(2)	
QUE	STION 6: INTERNAL COMBUSTION ENGINES	[13]	
6.1	Carburettor	(1)	
6.2	A – Choke butterfly B – Discharge nozzle		

C – Venturi

-			
D –	- Throttle butterfly		

(4) **[5]**

QUESTION 7: CRANES AND LIFTING MACHINES

- 7.1 • Number of drops a rope can make.
 - Maximum length per drop.
 - The braking force of the rope
 - The rope must withstand distortion and crushing.
 - The rope must resist corrosion
 - The maximum velocity.
 - The hoisting drum and pulley diameter.
 - The rope must resist abrasion.
 - Mass the rope can handle.
 - Size of the grooves and/or pulleys. $(Any 4 \times 1)$ (4)
- 7.2 7.2.1 The crane driver's cabin, crane jib and counter-weight rotate in a clockwise \checkmark and anticlockwise motion. \checkmark
 - 7.2.2 Sideways movement of the crane \checkmark along rail \checkmark

 (2×2) (4) [8]

QUESTION 8: MATERIALS AND MATERIAL PROCESSESS

TION 9: INDUSTRIAL ORGANISATION AND PLANNING	
ToughnessHardnessWear resistance	(3) [5]
 Thermoplastics get soft when they are heated, and solidity again once cooled. Thermosetting plastics go through a chemical change during moulding, and can never be softened by reheating again. 	(2)
	 Thermoplastics get soft when they are heated, and solidify again once cooled. Thermosetting plastics go through a chemical change during moulding, and can never be softened by reheating again. Toughness Hardness Wear resistance

9.1	To provide the correct materials \checkmark in correct quantity \checkmark at the right place at the right time \checkmark	(3)
9.2	 Equipment and facilities Product and/or service Mechanisation Condition of raw materials 	
	 The extend of power used Layout and flow of production in the workplace 	(6)

Layout and flow of production in the workplace

-6-PRODUCTION AND QUALITY CONTROL N5

- 9.3 Wrong timing
 - Order of presentation
 - Lack of clarity
 - Loss of information
 - Credibility of the source

QUESTION 10: ENTREPRENEURSHIP

- 10.1 Entrepreneurship refers to a situation where an entrepreneur, \checkmark after having identified an opportunity, \checkmark assembles the necessary resources and creates \ddot{a} new business \checkmark in the face of uncertainty and risks, with the ultimate goal of making profit and achieving growth.✓ $(Any 3 \times 1)$
- 10.2 • Define the problem.
 - $(Any 5 \times 1)$ (5)
 - [8]

(3)

- TOTAL: 100
- Never criticise any ideas. • Don't build/evaluate on any of the ideas. • Accommodate wild and crazy ideas too. • Accommodate as many ideas as possible. • Compile a list of all ideas obtained. • Combine ideas received and build on them.

 $(Any 3 \times 1)$ (3)[12]