

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE

MECHANOTECHNOLOGY N3

(8190373)

22 November 2019 (X-Paper) 09:00–12:00

This question paper consists of 8 pages, 3 tables and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Start each question on a NEW page.
- 5. Write neatly and legibly.

1.2

QUESTION 1: POWER TRANSMISSION

1.1 Design a wedge belt drive for a 79 kW electric motor for a reciprocating pump. The pump is to run for 15 hours a day. The driving pulley on the motor rotates at 700 r/min while the pump rotates at 442 r/min. The centre distance between the driving and driven pulleys of the rotary pump is 1 300 mm. The system operates on a soft start. The motor shaft diameter is 100 mm and that of the pump is 120 mm.

Refer to TABLE 1 and TABLE 2 (attached) when answering to the following questions:

- 1.1.1 Calculate the speed ratio (3) 1.1.2 Determine the service factor of the drive (2) 1.1.3 Calculate the design power (3)1.1.4 Determine the minimum pulley diameter of the drive (2) 1.1.5 Calculate the length of the belt used to drive the system (3)Explain the following terms applicable to a gear system: 1.2.1 Circular tooth thickness (2)
- 1.2.2 Dedendum (2)
- 1.2.3 Circular pitch (2)
- 1.3 Name the gear shown in FIGURE 1.

FIGURE 1

-3-

QUESTION 2: BRAKES

2.1 Discuss the operational principle of a hydraulic braking system. (4)
2.2 State ONE disadvantage of an electromagnetic braking system. (1)

QUESTION 3: BEARINGS

- 3.1 Name FIVE types of friction bearings commonly used in the mechanical engineering field. (5)
 3.2 3.2.1 Name the bearing shown in FIGURE 2. (1)
 - 3.2.2 Label the parts indicated on the bearing shown in FIGURE 2 by only writing the answer next to the letter (A–C) in the ANSWER BOOK. (3)

3.2.3. Name the severity type of loads that this bearing can carry.

(1) [**10**]

[5]

QUESTION 4: WATER PUMPS, COOLING AND LUBRICATION

- 4.1 State FIVE causes of pump slip in water pumps. (5)
- 4.2 4.2.1 Name the device shown in FIGURE 3.
 - 4.2.2 Name the parts indicated on the device shown in FIGURE 3 by only writing the answer next to the letter (A–D) in the ANSWER BOOK.

QUESTION 5: HYDRAULICS AND PNEUMATICS

5.1	Define Pascal's law of pressure of fluids.						
5.2	Make a	drawing of the following symbols of a basic pneumatic system:					
	5.2.1	Pressure relief valve	(2)				
	5.2.2	Actuator	(2)				
	5.2.3	Filter	(2)				
	5.2.4	Air receiver	(2) [10]				

(1)

(4)

QUESTION 6: INTERNAL-COMBUSTION ENGINE

6.1 6.1.1. Name the parts indicated on the device shown in FIGURE 4 by only writing the answer next to the letter (A–E) in the ANSWER BOOK.

FIGURE 4

6.1.2.Name the device shown in FIGURE 4 above.(1)State THREE functions of an engine blower.(3)[9]

6.2

QUESTION 7: CRANES AND LIFTING MACHINES

- 7.1 Explain the basic purpose of a *load limiter*.
- 7.2 Name FOUR factors that can cause steel ropes to deteriorate.
- 7.3 Name the different types of hand signals indicated in the pictures on each block in FIGURE 5. Write only the answer next to the letter (A–C) in the ANSWER BOOK.

(3) **[9]**

(2)

(4)

QUESTION 8: MATERIALS AND MATERIAL PROCESSES

8.1	Define to differentiate between ferrous and nonferrous metals and give	e ONE	
	example for each of these types of metals.	(2 × 2)	(4)
8.2	Explain the purpose for the colour-coding of metals.		(2) [6]

QUESTION 9: INDUSTRIAL ORGANISATION AND PLANNING

QUESTION 10: ENTREPRENEURSHIP								
9.3	State FIVE production control documents used in an industrial organisation.	(5) [11]						
9.2	Discuss the purpose of a <i>grievance procedure</i> .	(2)						
9.1	Name FOUR types of communication channels in an industrial organisation.	(4)						

10.3	Mention three business resources for the small business entrepreneur.	(3) [10]
10.2	State FOUR processes of generating ideas for establishing a small business.	(4)
10.1	Briefly explain the term <i>small business enterprise</i> .	(3)

TOTAL: 100

TABLE 1

SERVICE FACTORS FOR THE SELECTION OF WEDGE BELTS

	TYPES OF PRIME MOVERS										
	'S	oft' start	:S	'He	rts						
	Hours	s per day	[,] duty	Hours per day duty							
TYPES OF DRIVEN MACHINES	10 and under	Over 10 to	Over 16	10 and under	Over 10 to	Over 16					
Class 1 – Light duty Blowers and fans Centrifugal compressors and pumps Belt conveyors (uniformly loaded)	1,0	1,1	1,2	1,1	1,2	1,3					
Class 2 – Medium duty Blowers and fans Rotary compressors and pumps Belt conveyors (not uniformly loaded) Generators	1,1	1,2	1,3	1,2	1,3	1,4					
Class 3 – Heavy duty Brick machinery Compressors and pumps (reciprocating) Conveyors (heavy duty) Hammer mills Punches and presses	1,2	1,3	1,4	1,4	1,5	1,6					
Class 4 – Extra heavy duty Crushers Mills	1,3	1,4	1,5	1,5	1,6	1,8					

TABLE 2

MINIMUM PULLEY DIAMETER (mm)

Speeds							Mi	inim	um	pulle	ey di	iame	eter	(mm)					
faster		Design power (kW)																		
than in r/min	To 1	3,0	4,0	5,0	7,5	10	15	20	25	30	40	50	60	75	90	110	130	150	200	250
500	67	90	100	112	125	140	180	200	212	236	250	280	280	315	375	400	450	475	500	560
600	67	85	90	100	112	125	140	180	200	212	224	250	265	280	300	335	375	400	475	500
720	67	80	85	90	90	106	132	150	160	170	200	236	250	265	280	300	335	375	450	500
960	67	75	80	85	95	100	112	132	150	180	180	200	224	250	280	280	300	335	400	450
1 200	67	71	80	80	95	95	106	118	132	150	160	180	200	236	236	250	265	300	335	355
1 440	67	67	75	80	85	85	100	112	125	140	160	170	190	212	236	236	250	280	315	335
1 800	67	67	71	75	80	85	95	106	112	125	150	160	170	190	212	224	236	265	300	335
2 800	67	67	67	67	80	80	85	90	100	112	125	140	160	170	180	212	224	236	-	-

T000(E)(N0)T

TABLE 3

CENTRE DISTANCES FOR 22 N SPC WEDGE BELT DRIVES

Combined arc and belt length						0,80			0,85				0,90				0,95	
Correction factor						-		-,					-		- ,			
	Pitch diameter of pulleys		Power k	per belt W	BELT L	BELT LENGTH												
Speed ratio	Driver	Driven	960 r/min	1 440 r/min	2 000	2 120	2 240	2 360	2 500	2 650	2 800	3 000	3 150	3 350	3 550	3 750	4 000	4 250
1,58	400	630	37,85	49,15	-	-	-	-	-	-	580	682	758	859	960	1 060	1 186	1 311
1,58	300	475	25,19	33,63	-	443	504	565	636	711	787	887	963	1 063	1 163	1 264	1 389	1 514
1,58	224	355	14,82	19,80	542	602	662	723	793	868	943	1 043	1 119	1 219	1 319	1 419	1 544	1 669
1,59	315	500	27,16	36,17	-	-	471	532	603	679	755	855	931	1 031	1 131	1 232	1 357	1 482
1,59	236	375	16,50	22,09	516	576	637	697	767	842	918	1 018	1093	1 193	1 293	1 394	1 519	1 644
1,60	250	400	18,44	24,71	484	545	605	666	736	811	887	987	1 062	1 162	1 263	1 363	1 488	1 613
1,60	500	800	49,26	-	-	-	-	-	-	-	-	-	-	-	739	841	968	1 094

MECHANOTECHNOLOGY N3

FORMULA SHEET

Any applicable formula may also be used.

- 1. Corrected power per belt = (basic power per belt + power increment per belt) × correction factor
- 2. Force (F) = Pressure $(P) \times$ Area (A)
- 3. Work done (W) = Force (F) \times Distance (s)
- 4. Volume (V) = Area of base (A) × Perpendicular height $(\perp h)$