

# higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

# T1130**(E)**(A4)T

### NATIONAL CERTIFICATE

## **MECHANOTECHNOLOGY N3**

(8190373)

4 April 2019 (X-Paper) 09:00–12:00

This question paper consists of 7 pages, 1 formula sheet and two tables of 4 pages.

# DEPARTMENT OF HIGHER EDUCATION AND TRAINING

# REPUBLIC OF SOUTH AFRICA

#### NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3 TIME: 3 HOURS MARKS: 100

#### INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

1.2

#### **QUESTION 1: POWER TRANSMISSION, CLUTCHES AND COUPLING OF SHAFT**

1.1 A car wash machine, rotating at 800 r/min, is driven by a 38 kW electric motor with a rotational speed of 1200 r/min. It operates at medium duty for only eleven hours per day and a soft start is used.

Answer the questions below, using the attached tables.

| 1.1.1                  | Calculate the speed ratio.                                              | (1) |
|------------------------|-------------------------------------------------------------------------|-----|
| 1.1.2                  | Determine the service factor.                                           | (1) |
| 1.1.3                  | Calculate the design power.                                             | (2) |
| 1.1.4                  | Determine the minimum pulley diameter.                                  | (1) |
| 1.1.5                  | Calculate the number of belts if the corrected power per belt is 22 kW. | (2) |
| State TH<br>gear drive | REE factors to consider before deciding to apply a transmission of es.  | (3) |

1.3 Study FIGURE 1 below which shows a coupling and answer the questions.



#### FIGURE 1

|     | 1.3.1      | Name the type of coupling.                                                         | (1)                |
|-----|------------|------------------------------------------------------------------------------------|--------------------|
|     | 1.3.2      | Label parts A–D by writing the answer next to the letter (A–D) in the ANSWER BOOK. | (4)                |
| 1.4 | Briefly de | escribe the purpose of a clutch.                                                   | (2)                |
| 1.5 | State TH   | IREE advantages of operating a loose-weight centrifugal clutch.                    | (3)<br><b>[20]</b> |

#### **QUESTION 2: BRAKES**

**€**<sup>\*</sup>

#### **QUESTION 3: BEARINGS**

| 3.3.1. | Each bearing has an identification number consisting of three figures, the third figure refers to its diameter series.                           | (1)<br><b>[6]</b> |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3.3    | Indicate whether the following statement is TRUE or FALSE. Write only 'True' or 'False' next to the question number (3.3.1.) in the ANSWER BOOK. |                   |
|        | State THREE methods to determine the condition of a bearing during service.                                                                      | (3)               |
| 3.2    | Antifriction bearings must be free of contamination and must be monitored regularly.                                                             |                   |
| 3.1    | Distinguish between friction bearings and antifriction bearings.                                                                                 | (2)               |

#### **QUESTION 4: WATER PUMPS, COOLING AND LUBRICATION**

| 4.1 | If you experience a problem with a centrifugal pump, it will usually be at the suction side of the pump |     |  |  |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|
|     | Briefly explain how can you overcome this problems                                                      | (2) |  |  |  |  |  |  |  |  |
| 4.2 | Explain the function of a petcock in a centrifugal pump.                                                | (2) |  |  |  |  |  |  |  |  |
| 4.3 | Name ONE purpose of a mechanical seal in water pumps.                                                   | (1) |  |  |  |  |  |  |  |  |
| 4.4 | State FOUR advantages of an impeller-assisted cooling system over a thermosyphon cooling system.        | (4) |  |  |  |  |  |  |  |  |
| 4.5 | Discuss the working principle of a heat-exchanger as a water cooling system.                            | (3) |  |  |  |  |  |  |  |  |

[6]

**^**\*

4.6 FIGURE 2 shows a splash lubrication setup.





| Label the marked parts by writing the answer next to the letter (A-D) in the |      |
|------------------------------------------------------------------------------|------|
| ANSWER BOOK.                                                                 | (4)  |
|                                                                              | [16] |

#### **QUESTION 5: HYDRAULICS AND PNEUMATICS**

| 5.1 | State TH                                                                            | State THREE functions of a hydraulic accumulator.                                                                        |  |  |  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 5.2 | Draw a neat symbol of a hydraulic accumulator                                       |                                                                                                                          |  |  |  |  |  |  |  |  |  |
| 5.3 | A hydraulic cylinder has a volume of 620 $\times$ 10 <sup>-6</sup> m <sup>3</sup> . |                                                                                                                          |  |  |  |  |  |  |  |  |  |
|     | Calculate the following:                                                            |                                                                                                                          |  |  |  |  |  |  |  |  |  |
|     | 5.3.1                                                                               | Cross-sectional area of the cylinder if the length of the cylinder is 120 mm                                             |  |  |  |  |  |  |  |  |  |
|     | 5.3.2                                                                               | <ul> <li>5.3.2 Diameter of the cylinder</li> <li>5.3.3 Pressure in the cylinder if the exerted force is 40 kN</li> </ul> |  |  |  |  |  |  |  |  |  |
|     | 5.3.3                                                                               |                                                                                                                          |  |  |  |  |  |  |  |  |  |

(3 × 2)

(6) **[10]** 

#### **QUESTION 6: INTERNAL COMBUSTION ENGINES**

Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'True' or 'False' next to the question number (6.1–6.5) in the ANSWER BOOK.

- 6.1 The two phases of the two-stroke petrol engine cycle is called the induction phase and the exhaust phase.
- 6.2 A turbo is suitable only for a petrol engine.
- 6.3 A blower is driven by an engine using a belt drive.
- 6.4 A diesel engine is more expensive to maintain than other engines.
- 6.5 The power output of a diesel engine is generally lower than that of a petrol engine.

(5 × 1) **[5]** 

#### **QUESTION 7: CRANES AND LIFTING MACHINES**

| 7.1    | State FIVE disadvantages of a climbing-type tower crane.                             |                   |  |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|--|--|
| 7.2    | 2 State THREE functions of a fibre core in a steel rope.                             |                   |  |  |  |  |  |  |  |
|        |                                                                                      |                   |  |  |  |  |  |  |  |
| QUESTI | ON 8: MATERIALS AND MATERIAL PROCESSESS                                              |                   |  |  |  |  |  |  |  |
| 8.1    | Discuss the process of heat treatment on metal.                                      | (2)               |  |  |  |  |  |  |  |
| 8.2.   | Name the colour coding for each of the following metals                              |                   |  |  |  |  |  |  |  |
|        | 8.2.1 Silicon chrome steel                                                           | (1)               |  |  |  |  |  |  |  |
|        | 8.2.2 Cast steel                                                                     | (1)               |  |  |  |  |  |  |  |
| 8.3.   | Briefly describe, in point form, the general behaviour of copper during arc welding. | (4)<br><b>[8]</b> |  |  |  |  |  |  |  |

#### **QUESTION 9: INDUSTRIAL ORGANISATION AND PLANNING**

| 9.1    | Define grievance.                                                                                                       | (2)                |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|
| 9.2    | State FOUR aims of the Occupational Health and Safety Act, No. 85 of 1993.                                              | (4)                |  |  |  |  |  |
| 9.3    | Name FOUR types of disciplinary actions that can be taken by the employer against an employee who committed an offence. |                    |  |  |  |  |  |
| QUESTI | ON 10: ENTREPRENEURSHIP                                                                                                 | [.0]               |  |  |  |  |  |
| 10.1   | Explain the term small business enterprise.                                                                             | (4)                |  |  |  |  |  |
| 10.2   | What is the ultimate objective of an entrepreneur?                                                                      | (1)                |  |  |  |  |  |
| 10.3   | State SIX qualities of an entrepreneur.                                                                                 | (6)<br><b>[11]</b> |  |  |  |  |  |
|        | TOTAL:                                                                                                                  | 100                |  |  |  |  |  |

#### **MECHANOTECHNOLOGY N3**

#### FORMULA SHEET

Any other applicable formula may also be used.

- *1. Design power = Power (electrical motor) × service factor*
- 2. Corrected power per belt = (basic power per belt + power increment per belt) × correction factor
- 3. Belt length (L) = [(Pitch diameter of larger pulley + Pitch diameter of smaller pulley)  $\times$  1,57] + (2  $\times$  centre distance)

-1-

- 4. Force  $(F) = Pressure (P) \times area (A)$
- 5. Work done (W) = Force (F) × distance (s)
- 6. Volume (V) = Area of base (A) × perpendicular height  $(\bot h)$

#### TABLE 1

#### SERVICE FACTORS FOR THE SELECTION OF WEDGE BELTS

|                                       | TYPES OF PRIME MOVERS  |                                     |      |        |         |      |  |  |  |  |  |
|---------------------------------------|------------------------|-------------------------------------|------|--------|---------|------|--|--|--|--|--|
|                                       | Soft starts Heavy star |                                     |      |        |         |      |  |  |  |  |  |
|                                       | Hours                  | Hours per day duty Hours per day du |      |        |         |      |  |  |  |  |  |
| TYPES OF DRIVEN MACHINES              | 10 and                 | Over 10                             | Over | 10 and | Over 10 | Over |  |  |  |  |  |
|                                       | under                  | to 16                               | 16   | under  | to 16   | 16   |  |  |  |  |  |
| Class 1 - Light duty                  |                        |                                     |      |        |         |      |  |  |  |  |  |
| Blowers and fans                      |                        |                                     |      |        |         |      |  |  |  |  |  |
| Centrifugal compressors and pumps     | 1,0                    | 1,1                                 | 1,2  | 1,1    | 1,2     | 1,3  |  |  |  |  |  |
| Belt conveyors (uniformly loaded)     |                        |                                     |      |        |         |      |  |  |  |  |  |
| Class 2 - Medium duty                 |                        |                                     |      |        |         |      |  |  |  |  |  |
| Blowers and fans                      | 1,1                    | 1,2                                 |      |        |         |      |  |  |  |  |  |
| Rotary compressors and pumps          |                        |                                     | 1,3  | 1,2    | 1,3     | 1,4  |  |  |  |  |  |
| Belt conveyors (not uniformly loaded) |                        |                                     |      |        |         |      |  |  |  |  |  |
| Generators                            |                        |                                     |      |        |         |      |  |  |  |  |  |
| Class 3 - Heavy duty                  |                        |                                     |      |        |         |      |  |  |  |  |  |
| Brick machinery                       |                        |                                     |      |        |         |      |  |  |  |  |  |
| Compressors and pumps (reciprocating) | 4.0                    | 4.0                                 |      |        |         | 4.0  |  |  |  |  |  |
| Conveyors (heavy duty)                | 1,2                    | 1,3                                 | 1,4  | 1,4    | 1,5     | 1,6  |  |  |  |  |  |
| Hammer mills                          |                        |                                     |      |        |         |      |  |  |  |  |  |
| Punches and presses                   |                        |                                     |      |        |         |      |  |  |  |  |  |
| Class 4 - Extra heavy duty            |                        |                                     |      |        |         |      |  |  |  |  |  |
| Crushers                              | 1,3                    | 1,4                                 | 1,5  | 1,5    | 1,6     | 1,8  |  |  |  |  |  |
| Mills                                 |                        |                                     |      |        |         |      |  |  |  |  |  |

#### TABLE 2

#### CENTRE DISTANCES FOR 16 N SPB WEDGE BELT DRIVES

| Combined arc and belt length |                                             |        |                |                |             |       |       |       |       |       |       |       |       |       |       |       |       |       |
|------------------------------|---------------------------------------------|--------|----------------|----------------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Correction factor            |                                             |        |                | 0,8            |             |       |       | 0,85  |       |       | 0,9   |       |       |       | 1.05  |       |       |       |
| Speed                        | Pitch diameter of Power per pulleys belt kW |        | er per<br>t kW | BELT           | BELT LENGTH |       |       |       |       |       |       |       |       |       |       |       |       |       |
| ratio                        | Driver                                      | Driven | 960<br>r/min   | 1 440<br>r/min | 1 260       | 1 340 | 1 410 | 1 590 | 1 800 | 1 900 | 2 020 | 2 150 | 2 280 | 2 400 | 4 560 | 4 820 | 5 070 | 5 380 |
| 1,69                         | 236                                         | 400    | 11,94          | 16,56          | -           | -     | -     | -     | 392   | 443   | 504   | 570   | 635   | 696   | 1 779 | 1 909 | 2 034 | 2 189 |
| 1,75                         | 160                                         | 280    | 6,45           | 8,92           | 278         | 319   | 355   | 446   | 551   | 602   | 662   | 727   | 792   | 852   | -     | -     | -     | -     |
| 1,75                         | 180                                         | 315    | 7,92           | 11,00          | -           | 273   | 309   | 401   | 507   | 557   | 618   | 683   | 748   | 809   | -     | -     | -     | -     |
|                              |                                             |        |                |                |             |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1,78                         | 200                                         | 355    | 9,38           | 13,03          | -           | -     | -     | 351   | 458   | 508   | 569   | 635   | 700   | 760   | 1 843 | 1 973 | 2 098 | -     |
| 1,79                         | 140                                         | 250    | 4,95           | 6,80           | 319         | 360   | 395   | 486   | 591   | 641   | 702   | 767   | 832   | 892   | -     | -     | -     | -     |
| 1,79                         | 224                                         | 400    | 11,10          | 15,41          | -           | -     | -     | -     | 400   | 452   | 513   | 578   | 644   | 705   | 1 788 | 1 918 | 2 043 | 2 198 |

#### -4-

#### TABLE 3

#### CENTRE DISTANCES FOR 22 N SPC WEDGE BELT DRIVES

| Combined arc and belt length |                              |        |              |                |          | 0.80        |       | 0.85     |       |          |       |          | 0 90  | 0.95  |          |       |       |       |
|------------------------------|------------------------------|--------|--------------|----------------|----------|-------------|-------|----------|-------|----------|-------|----------|-------|-------|----------|-------|-------|-------|
| Correction                   | factor                       |        |              |                |          | 0,00        |       |          | 0,00  |          |       |          | 0,00  |       |          |       | 0,00  |       |
| Speed                        | Pitch diameter of<br>pulleys |        | Pow<br>bel   | er per<br>t kW | BELT     | 3ELT LENGTH |       |          |       |          |       |          |       |       |          |       |       |       |
| ratio                        | Driver                       | Driven | 960<br>r/min | 1 440<br>r/min | 2<br>000 | 2 120       | 2 240 | 2<br>360 | 2 500 | 2<br>650 | 2 800 | 3<br>000 | 3 150 | 3 350 | 3<br>550 | 3 750 | 4 000 | 4 250 |
| 1,58                         | 400                          | 630    | 37,85        | 49,15          | -        | -           | -     | -        | -     | -        | 580   | 682      | 758   | 859   | 960      | 1 060 | 1 186 | 1 311 |
| 1,58                         | 300                          | 475    | 25,19        | 33,63          | -        | 443         | 504   | 565      | 636   | 711      | 787   | 887      | 963   | 1 063 | 1<br>163 | 1 264 | 1 389 | 1 514 |
| 1,58                         | 224                          | 355    | 14,82        | 19,80          | 542      | 602         | 662   | 723      | 793   | 868      | 943   | 1<br>043 | 1 119 | 1 219 | 1<br>319 | 1 419 | 1 544 | 1 669 |
| 1,59                         | 315                          | 500    | 27,16        | 36,17          | -        | -           | 471   | 532      | 603   | 679      | 755   | 855      | 931   | 1 031 | 1<br>131 | 1 232 | 1 357 | 1 482 |
| 1,59                         | 236                          | 375    | 16,50        | 22,09          | 516      | 576         | 637   | 697      | 767   | 842      | 918   | 1<br>018 | 1093  | 1 193 | 1<br>293 | 1 394 | 1 519 | 1 644 |
| 1,60                         | 250                          | 400    | 18,44        | 24,71          | 484      | 545         | 605   | 666      | 736   | 811      | 887   | 987      | 1 062 | 1 162 | 1<br>263 | 1 363 | 1 488 | 1 613 |
| 1,60                         | 500                          | 800    | 49,26        | -              | -        | -           | -     | -        | -     | -        | -     | -        | -     | -     | 739      | 841   | 968   | 1 094 |

#### TABLE 4

#### MINIMUM PULLEY DIAMETER (mm)

| Speed of<br>faster<br>shaft<br>r/min | Minimum pulley diameter (mm) |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|--------------------------------------|------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                                      | Design power (kW)            |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|                                      | Up<br>to 1                   | 3,0 | 4,0 | 5,0 | 7,5 | 10  | 15  | 20  | 25  | 30  | 40  | 50  | 60  | 75  | 90  | 110 | 130 | 150 | 200 | 250 |
| 500                                  | 67                           | 90  | 100 | 112 | 125 | 140 | 180 | 200 | 212 | 236 | 250 | 280 | 280 | 315 | 375 | 400 | 450 | 475 | 500 | 560 |
| 600                                  | 67                           | 85  | 90  | 100 | 112 | 125 | 140 | 180 | 200 | 212 | 224 | 250 | 265 | 280 | 300 | 335 | 375 | 400 | 475 | 500 |
| 720                                  | 67                           | 80  | 85  | 90  | 90  | 106 | 132 | 150 | 160 | 170 | 200 | 236 | 250 | 265 | 280 | 300 | 335 | 375 | 450 | 500 |
| 960                                  | 67                           | 75  | 80  | 85  | 95  | 100 | 112 | 132 | 150 | 180 | 180 | 200 | 224 | 250 | 280 | 280 | 300 | 335 | 400 | 450 |
| 1 200                                | 67                           | 71  | 80  | 80  | 95  | 95  | 106 | 118 | 132 | 150 | 160 | 180 | 200 | 236 | 236 | 250 | 265 | 300 | 335 | 355 |
| 1 440                                | 67                           | 67  | 75  | 80  | 85  | 85  | 100 | 112 | 125 | 140 | 160 | 170 | 190 | 212 | 236 | 236 | 250 | 280 | 315 | 335 |
| 1 800                                | 67                           | 67  | 71  | 75  | 80  | 85  | 95  | 106 | 112 | 125 | 150 | 160 | 170 | 190 | 212 | 224 | 236 | 265 | 300 | 335 |
| 2 800                                | 67                           | 67  | 67  | 67  | 80  | 80  | 85  | 90  | 100 | 112 | 125 | 140 | 160 | 170 | 180 | 212 | 224 | 236 | -   | -   |