

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE

MECHANOTECHNOLOGY N3

(8190373)

12 November 2020 (X-paper) 09:00–12:00

This question paper consists of 6 pages, 2 tables and 1 formula sheet.

071Q1E2012

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Start each question on a new page.
- 5. Write neatly and legibly.

QUESTION 1: POWER TRANSMISSION, CLUTCHES

1.1 A wedge belt drive is to be installed between an electric motor and a compressor with the following information:

Type of wedge belt Power of electric motor	22 N SPN 12 kW
Speed of smaller pulley	1 300 r/min
Speed of larger pulley	500 r/min
Type of start	heavy
Duty operational type	medium
Duty hours per day	9 hours

Refer to TABLE 1 and TABLE 2 to answer the following questions:

1.1.1	Calculate the speed ratio	(3)
1.1.2	Calculate the design power	(2)
1.1.3	Determine the minimum pulley diameter of the drive and indicate how the answer was obtained.	(2)
State TH	REE main components of a centrifugal clutch.	(3)
Name FC	OUR variations obtainable when using a planet gear system.	(4)
Name TH	IREE differences between a <i>belt drive</i> and a <i>chain drive</i> .	(6) [20]
		[20]

QUESTION 2: BRAKES

1.2

1.3

1.4

2.1 S	State FOUR advantages of an air-brake system.	[4]
-------	---	-----

QUESTION 3: BEARINGS

- 3.1 Give the meaning of each of the following figures with respect to anti-friction bearing identity numbers:
 - 3.1.1 First figure
 - 3.1.2 Second figure
 - 3.1.3 Third figure
- 3.2 Which THREE methods can be applied to examine the condition of a bearing? (3)
- 3.3 State FOUR main causes of vibration and noise which can be harmful in antifriction bearings. (4) [10]

QUESTION 4: WATER PUMPS, COOLING AND LUBRICATION

4.1	State FOUR causes of overheating in cooling systems.	(4)
4.2	State FOUR reasons for the cooling of compressors.	(4)
4.3	Explain the purpose of lubrication.	(3)
4.4	State the difference between a <i>plunger</i> and a <i>piston</i> in water pumps.	(2) [13]

QUESTION 5: HYDRAULICS AND PNEUMATICS

5.1 A force is applied on piston A of a hydraulic press causing a force of 800 N on ram B. The distance moved by ram B is 9 mm upwards. The area of piston A is 2000 mm² and the area of ram B is 0,02 m².

Calculate each of the following:

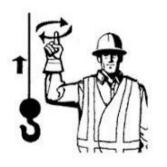
5.1.1	Diameter of ram B in mm (Round off your answer into 3 decimal places)	(2)
5.1.2	Force (in N) applied on piston A	(3)
5.1.3	Distance in mm that piston A moves downwards	(3)
State the pneumation	characteristics of air flow with respect to area and flow rate in a c system.	(3) [11]

5.2

 (3×1)

(3)

QUESTION 6: INTERNAL COMBUSTION ENGINES


Redraw the table below and complete it by indicating THREE main construction differences between a petrol engine and a diesel engine.

	PETROL	DIESE	EL
6.1			
6.2			
6.3			
		_	(3 × 2)

QUESTION 7: CRANES AND LIFTING MACHINES

7.1	State TWO advantages of increasing the number of drops when hoisting loads with a steel rope.	(2)
7.2	Name TWO methods of weaving steel ropes.	(2)
7.3	Explain the purpose of a crane with respect to mechanical advantage.	(2)
7.4	State TWO advantages of a load limiter when using steel ropes.	(2)

7.5 What does the hand signal below indicate?

(1) **[9]**

QUESTION 8: MATERIAL AND MATERIAL PROCESSES

8.1	Different	tiate between the TWO main polymers.	(4)
8.2	Briefly e	xplain each of the following properties of metals:	
	8.2.1	Case hardening	
	8.2.2	Normalising (2 × 2)	(4) [8]
QUEST	ION 9: INE	OUSTRIAL ORGANISATION AND PLANNING	
9.1	Sate FO	UR purposes of the Operational Health and Safety Act No.85 of 1993.	(4)
9.2	Explain	budget control.	(2)
9.3		e function of each of the following production control documents used adgeting and controlling expenses in an industrial organisation:	
	9.3.1	Clock cards	
	9.3.2	Production flow charts	
	9.3.3	Job cards (3 × 2)	(6) [12]
QUEST	ION 10: EI	NTREPRENEURSHIP	
10.1	Briefly e	xplain <i>entrepreneurship</i> .	(3)
10.2	Briefly e somethi	explain the following techniques an entrepreneur can use to create ng new:	
	10.2.1	Metaphorical analogy	
	10.2.2	Brainstorming	

(2 × 2) (4) **[7]**

TOTAL: 100

TABLE 1

SERVICE FACTORS FOR SELECTION OF WEDGE BELTS

TYPES OF PRIME MOVERS										
_	Soft starts Heavy starts									
	Duty	hours pe	er day	Duty	Duty hours per day					
TYPES OF DRIVEN MACHINES	10 and under	Over 10 to 16	Over 16	10 and under	Over 10 to 16	Over 16				
Class 1 – Light duty Blowers and fans Centrifugal compressors and pumps Belt conveyors (uniformly loaded)	1,0	1,1	1,2	1,1	1,2	1,3				
Class 2 – Medium duty Blowers and fans Rotary compressors and pumps Belt conveyors (not uniformly loaded) Generators	1,1	1,2	1,3	1,2	1,3	1,4				
Class 3 – Heavy duty Brick machinery Compressors and pumps (reciprocating) Conveyors (heavy duty) Hammer mills Punches and presses	1,2	1,3	1,4	1,4	1,5	1,6				
Class 4 – Extra heavy duty Crushers Mills	1,3	1,4	1,5	1,5	1,6	1,8				

TABLE 2

MINIMUM PULLEY DIAMETER (mm)

Speeds							Min	imu	m p	ulley	/ dia	met	er (r	nm)						
of faster								D	esig	in po	owe	r (kV	V)							
than in r/min	То 1	3,0	4,0	5,0	7,5	10	15	20	25	30	40	50	60	75	90	110	130	150	200	250
500	67	90	100	112	125	140	180	200	212	236	250	280	280	315	375	400	450	475	500	560
600	67	85	90	100	112	125	140	180	200	212	224	250	265	280	300	335	375	400	475	500
720	67	80	85	90	90	106	132	150	160	170	200	236	250	265	280	300	335	375	450	500
960	67	75	80	85	95	100	112	132	150	180	180	200	224	250	280	280	300	335	400	450
1 200	67	71	80	80	95	95	106	118	132	150	160	180	200	236	236	250	265	300	335	355
1 440	67	67	75	80	85	85	100	112	125	140	160	170	190	212	236	236	250	280	315	335
1 800	67	67	71	75	80	85	95	106	112	125	150	160	170	190	212	224	236	265	300	335
2 800	67	67	67	67	80	80	85	90	100	112	125	140	160	170	180	212	224	236	-	-

MECHANOTECHNOLOGY N3

FORMULA SHEET

Any other applicable formula may also be used.

1. Design power = power (electrical motor) × service factor

2. Corrected power per belt = (basic power per belt + power increment per belt) × correction factor

3. Belt length (L) = [(pitch diameter of larger pulley + pitch diameter of smaller pulley) \times 1,57] + (2 × centre distance)

- 4. Force $(F) = pressure (P) \times area (A)$
- 5. Work done (W) = force $(F) \times$ distance (s)
- 6. Volume (V) = area of base (A) × perpendicular height $(\perp h)$