

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE

MECHANOTECHNOLOGY N3

(8190373)

8 February 2022 (X-paper) 09:00-12:00

Nonprogrammable calculators may be used.

This question paper consists of 8 pages, 2 tables and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Start each question on a new page.
- 5. Only use a black or blue pen.
- 6. Write neatly and legibly.

QUESTION 1: POWER TRANSMISSION, CLUTCHES AND COUPLING OF SHAFTS

1.1 A blower rotating at a speed of 700 r/min is driven by a 35-kW electric motor, rotating at 1 300 r/min. This is a medium-duty operation that functions for 11 hours per day. The blower operates through a soft start.

> Refer to the TABLE 1 and TABLE 2 (attached) and answer the following questions:

- 1.1.1 Calculate the speed ratio.
- 1.1.2 Determine the service factor for this drive.
- 1.1.3 Calculate the design power.
- 1.1.4 Determine the minimum pulley diameter.
- 1.1.5 Calculate the number of belts if the corrected power per belt is 20,89 kW.
 - (5×2) (10)

(3)

(2)

- 1.2 Name the THREE sprocket wheels that could be distinguished with regard to a chain drive.
- State TWO advantages of the use of a centrifugal clutch as a coupling device 1.3 between two shafts.
- Indicate whether the following statements are TRUE or FALSE by writing only 1.4 'True' or 'False' next to the guestion number (1.4.1-1.4.5) in the ANSWER BOOK.
 - 1.4.1 The addendum of a gear tooth is the radial height of the tooth below the circular pitch.
 - 1.4.2 The V-belt has more reinforcement materials to make it stronger when compared to the wedge belt.
 - 1.4.3 In gear drives Tooth thickness = Addendum + Dedendum
 - A spiral claw clutch can be used to transmit energy from one shaft 1.4.4 to another, with the rotation taking place in both directions.
 - 1.4.5 The module of a gear is the ratio between the circular pitch and the number of teeth on the gear and is measured in millimetres.

(5 × 1) (5) [20]

QUESTION 2: BRAKES

Give FIVE disadvantages of a cone brake system.

QUESTION 3: BEARINGS

- 3.1 State THREE advantages of guide bearings.
- 3.2 Name FOUR types of rolling elements applicable in antifriction bearings. (4)
- 3.3 Refer to FIGURE 1 (below) of a single-row radial cylindrical roller bearing and label the different parts (A–C), as indicated. Write only the answers next to the letter (A–C) in the ANSWER BOOK.

[5]

(3)

QUESTION 4: WATER PUMPS, COOLING AND LUBRICATION

Choose a term from COLUMN B that matches a description in COLUMN A. Write only the letter (A–P) next to the question number (4.1-4.15) in the ANSWER BOOK.

	COLUMN A	COLUMN B							
4.1	Transports fluids from one location to another	A B	lubrication						
4.2	Caused by the sudden closing of a valve								
4.3	Backward and forward movement	C	and petrol						
4.4	Not suitable for pumping gases	D	overcooling of fuel						
1 5	The difference between theoretical flow rate	E	plunger						
4.0	and real flow rate	F	pump 🔳						
4.6	Lift and push fluids from one level to the next	G	sight feed lubrication						
47	An element used to trap contaminants	Н	reciprocating action						
	without restricting the flow oil	I	centrifugal pumps						
4.8	If there are any leaks, you can see them immediately	J	pump slip						
4.9	Its length is longer than its stroke	K	water hammer						
1 10	Method used to maximise the life span and	L	external packing						
4.10	endurance of a machine	М	indirect cooling						
4.11	The water is stored in a radiator, where it is	Ν	heat exchanger						
	In turn cooled by air flow	0	filter						
4.12	Mainly used in two-stroke petrol engines	Р	direct cooling						
4.13	The best cooling system for a stationary engine	-							
4.14	It results in the condensation of fuel								
4.15	The oil supply is controlled by the position of the needle								
			(15 × 1)						

[15]

QUESTION 5: HYDRAULICS AND PNEUMATICS

The diameter of a plunger in a hydraulic cylinder is 50 mm and the length of the cylinder is 150 mm. During operation, a pressure of 350 kPa is exerted on the plunger.

Calculate the following:

- 5.1 The cross-sectional area of the plunger (express answer in millimetres)
- 5.2 The force of the plunger (express answer in Newton)
- 5.3 The work done by the plunger, if it moved a distance of 80 mm (express answer in joules)

QUESTION 6: INTERNAL COMBUSTION ENGINE

Refer to FIGURE 2 (below) of a fuel injector and label the different parts (A–E), as indicated. Write only the answers next to the letter (A–E) in the ANSWER BOOK.

Α

в

D

F

SPRING CAP NUT

SPINDLE

NOZZLE HOLDER

NOZZLE CAP NUT

FIGURE 2

[5]

 (3×2)

[6]

QUESTION 7: CRANES AND LIFTING MACHINES

- 7.1 State FOUR functions of a fibre core in a steel rope.
- 7.2 Refer to FIGURE 3 (below) of a climbing-type tower crane (on a bogie) and label the different parts (A–D), as indicated. Write only the answers next to the letter (A–D) in the ANSWER BOOK.

QUESTION 8: MATERIALS AND MATERIAL PROCESSES

- 8.1 State FIVE characteristics of thermoplastics.
- 8.2 Briefly explain the term *non-ferrous metal* and give an example.
- 8.3 Metals are identified in the industry according to their colour codes. Give the identity colour codes for the following metals as standardised by the SABS:
 - 8.3.1 Structural steel
 - 8.3.2 Cast steel
 - 8.3.3 High-carbon steel
 - 8.3.4 Low-alloy steel
 - 8.3.5 Stainless steel

 (5×1) (5)

8.4 State ONE result of normalising as a heat treatment process.

(1) [**13**]

(5)

(2)

(8190373)

QUESTION 9: INDUSTRIAL ORGANISATION AND PLANNING

TABLE 1

SERVICE FACTORS FOR THE SELECTION OF WEDGE BELTS

	TYPES OF PRIME MOVERS										
	'S	oft' start	S	'Heavy' starts							
	Hours	s per day	[,] duty	Hours per day duty							
TYPES OF DRIVEN MACHINES	10 and	Over	Over	10 and	Over	Over					
	under	10 to 16	16	under	10 to 16	16					
Class 1 – Light duty											
Blowers and fans											
Centrifugal compressors and	1,0	1,1	1,2	1,1	1,2	1,3					
pumps											
Belt conveyors (uniformly loaded)											
Class 2 – Medium duty											
Blowers and fans											
Rotary compressors and pumps		1.2	1.3	1.2	1.3	1.4					
Belt conveyors (not uniformly	.,.	.,_	.,	.,_	.,0	.,.					
loaded)											
Generators											
Class 3 – Heavy duty											
Brick machinery											
Compressors and pumps											
(reciprocating)	1,2	1,3	1,4	1,4	1,5	1,6					
Conveyors (heavy duty)											
Hammer mills											
Punches and presses											
Class 4 – Extra heavy duty											
Crushers	1,3	1,4	1,5	1,5	1,6	1,8					
Mills											

TABLE 2

MINIMUM PULLEY DIAMETER (mm)

Speeds	Minimum pulley diameter (mm)																			
of faster	Design Power (kW)																			
than in r/min	То 1	3,0	4,0	5,0	7,5	10	15	20	25	30	40	50	60	75	90	110	130	150	200	250
500	67	90	100	112	125	140	180	200	212	236	250	280	280	315	375	400	450	475	500	560
600	67	85	90	100	112	125	140	180	200	212	224	250	265	280	300	335	375	400	475	500
720	67	80	85	90	90	106	132	150	160	170	200	236	250	265	280	300	335	375	450	500
960	67	75	80	85	95	100	112	132	150	180	180	200	224	250	280	280	300	335	400	450
1 200	67	71	80	80	95	95	106	118	132	150	160	180	200	236	236	250	265	300	335	355
1 440	67	67	75	80	85	85	100	112	125	140	160	170	190	212	236	236	250	280	315	335
1 800	67	67	71	75	80	85	95	106	112	125	150	160	170	190	212	224	236	265	300	335
2 800	67	67	67	67	80	80	85	90	100	112	125	140	160	170	180	212	224	236	-	-
										7										

MECHANOTECHNOLOGY N3

FORMULA SHEET

Any applicable formula may also be used.

- 1. Corrected power per belt = (basic power per belt + power increment per belt) × correction factor
- 2. Force (F) = Pressure (P) × Area (A)
- 3. Work done (W) = Force (F) \times Distance (s)
- 4. Volume (V) = Area of base (A) × Perpendicular height $(\bot h)$