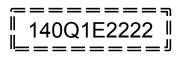


# higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA


## NATIONAL CERTIFICATE

## **MECHANOTECHNOLOGY N3**

(8190373)

22 November 2022 (X-paper) 09:00–12:00

This question paper consists of 6 pages, 2 tables and 1 diagram sheet.



### DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3 TIME: 3 HOURS MARKS: 100

### INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Start each section on a new page.
- 5. Use only a black or a blue pen.
- 6. Write neatly and legibly.

### **QUESTION 1: POWER TRANSMISSION, COUPLING OF SHAFTS AND CLUTCHES**

1.1 A wedge belt drive of a 55 kW electric motor runs at 1 200 r/min to a conveyor belt running at 750 r/min. The drive is 'light duty'. The approximate centre distance is 2 000 mm over a duty of 11 hours per day. The shaft driving the motor has an 80 mm diameter and the shaft driving the conveyor is 90 mm. the start is heavy-duty (direct).

Analyse the above statement and determine the following:

|     | 1.1.1                                                                                               | Speed ratio                        | (2)                |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------|------------------------------------|--------------------|--|--|--|--|--|
|     | 1.1.2                                                                                               | Service factor                     | (2)                |  |  |  |  |  |
|     | 1.1.3                                                                                               | Design Power                       | (2)                |  |  |  |  |  |
|     | 1.1.4                                                                                               | The minimum pulley diameter        | (2)                |  |  |  |  |  |
| 1.2 | When positioning an idler sprocket, there are factors to be considered. State SIX of these factors. |                                    |                    |  |  |  |  |  |
| 1.3 | Name TH                                                                                             | IREE categories of fast couplings. | (3)                |  |  |  |  |  |
| 1.4 | Name TH                                                                                             | IREE types of friction clutches.   | (3)<br><b>[20]</b> |  |  |  |  |  |
|     |                                                                                                     |                                    |                    |  |  |  |  |  |

#### **QUESTION 2: BRAKES**

- 2.1 FIGURE 1 below shows a sketch of a brake system. Name the brake system shown. (1)
- 2.2 Name the parts indicated in the FIGURE 1 by writing only the answer next to the letter (A–D) in the ANSWER BOOK.

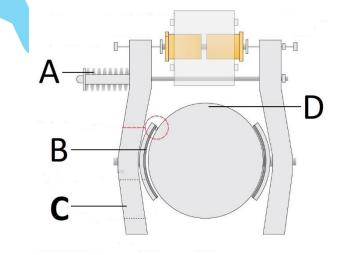
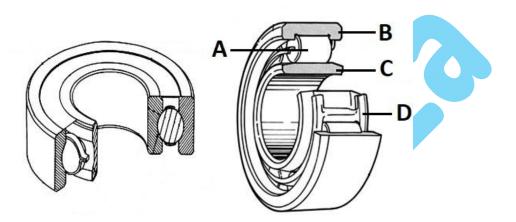



FIGURE 1




### **QUESTION 3: BEARINGS**

3.1 FIGURE 2 below shows two anti-friction bearings. Name the TWO anti-friction bearings shown.

-4-

3.2 Name the parts indicated in FIGURE 2 by writing only the answer next to the letter (A–D) in the ANSWER BOOK.



| FIGURE 2 | (4) |
|----------|-----|
|          |     |

| 3.3 | A bearing number consists of three figures. On each number, what does the |      |
|-----|---------------------------------------------------------------------------|------|
|     | first figure indicates?                                                   | (1)  |
| 3.4 | Briefly explain the working principle of an anti-friction bearing.        | (3)  |
|     |                                                                           | [10] |

### QUESTION 4: WATER PUMPS, COOLING AND LUBRICATION

| 4.1 | answer a | whether the following statements are TRUE or FALSE. Choose the nd write only 'True' or 'False' next to the question number (4.1.1–4.1.6) ISWER BOOK. |     |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | 4.1.1    | A reciprocating pump has THREE main moving elements.                                                                                                 | (1) |
|     | 4.1.2    | A plunger and a piston perform the same function.                                                                                                    | (1) |
|     | 4.1.3    | A piston in a water pump has packing rings inserted on the rim in order to prevent water leakage.                                                    | (1) |
|     | 4.1.4    | Low pressure in a piping system is the cause for water hammer.                                                                                       | (1) |
|     | 4.1.5    | If there is no vacuum in the pump system, then no suction of water can take place.                                                                   | (1) |

(2)

| 4.2   | methods     | ion by mixing oil and petrol is one of the commonly known lubrication<br>is in the engineering field. Explain what happens when air-fuel ratio is<br>t in the following ways: | *                    |
|-------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|       | 4.2.1       | Too much oil                                                                                                                                                                  | (2)                  |
|       | 4.2.2       | Too little oil                                                                                                                                                                | (2)                  |
| 4.3   | Name T      | WO types of air-cooling systems.                                                                                                                                              | (2)                  |
| 4.4   | ,           | OUR reasons for cooling a compressor.                                                                                                                                         | (4)<br>[ <b>15</b> ] |
|       | ION 5: HY   | DRAULICS AND PNEUMATICS                                                                                                                                                       |                      |
| 5.1   | State the   | e main difference between a pneumatic system and a hydraulic system.                                                                                                          | (2)                  |
| 5.2   | Make a      | rough sketch of the following pneumatics symbols:                                                                                                                             |                      |
|       | 5.2.1       | Pressure relief valve                                                                                                                                                         | (2)                  |
|       | 5.2.2       | Adjustable control valve                                                                                                                                                      | (2)                  |
| 5.3   |             | essure in a hydraulic system is 0,9 MPa and the diameter of the plunger<br>im, calculate:                                                                                     |                      |
|       | 5.3.1       | The cross sectional area of the plunger                                                                                                                                       | (2)                  |
|       | 5.3.2       | The force exerted by the plunger                                                                                                                                              | (2)<br><b>[10]</b>   |
| QUEST | TION 6: INT | ERNAL COMBUSTION ENGINE                                                                                                                                                       |                      |
| 6.1   | State Of    | NE function of a turbo in an engine.                                                                                                                                          | (1)                  |
| 6.2   | Name th     | e FOUR different strokes of a petrol engine.                                                                                                                                  | (4)<br><b>[5]</b>    |

### **QUESTION 7: CRANES AND LIFTING MACHINES**

7.1 Choose a term from COLUMN B that matches a description that causes a steel rope to deteriorate in COLUMN A. Write only the letter (A–D) next to the question number (7.1.1–7.1.4) in the ANSWER BOOK.

|        | COLUMN A                         |            | COLUMN B                           |     |
|--------|----------------------------------|------------|------------------------------------|-----|
| 7.1.1  | Accelerated wear                 | A          | Broken core                        |     |
| 7.1.2  | Strand break                     | В          | Incorrect handling                 |     |
| 7.1.3  | Corrosion                        | С          | Sudden release of load             |     |
| 7.1.4  | Bird cage                        | D          | Insufficient lubrication           |     |
| 7.1.5. | Reduction in diameter            | Е          | Shock load                         |     |
|        |                                  | F          | Worn sheaves                       |     |
|        |                                  |            | (5 × 1)                            | (5) |
| 7.2    | There are THREE forces acting of | on a jib d | of a wharf crane. Name these THREE |     |
|        | forces.                          |            |                                    | (3) |
|        |                                  |            |                                    | [8] |
|        |                                  |            |                                    |     |
| QUESTI | ON 8: MATERIALS AND MATER        | IAL PRO    | DCESSES                            |     |

## 8.1Name FOUR properties of metal.(4)8.2State THREE characteristics of thermoplastics.(3)[7]

### **QUESTION 9: INDUSTRIAL ORGANISATION AND PLANNING**

| 9.1    | Within the production process of an organization, the budget is managed through various documents. Name FOUR of these documents. |   | (4)                |
|--------|----------------------------------------------------------------------------------------------------------------------------------|---|--------------------|
| 9.2    | Briefly state FOUR limitations of downwards communication.                                                                       |   | (4)                |
| 9.3    | Briefly discuss FOUR purposes of the Occupational Health and Safety Act (No. 15 of 1993).                                        | * | (4)<br><b>[12]</b> |
| QUESTI | ON 10: ENTREPRENEURSHIP                                                                                                          |   |                    |
| 10.1   | Explain the concept entrepreneurship.                                                                                            |   | (4)                |
| 10.2   | Name FOUR factors that will influence the location of a small business enterprise.                                               |   | (4)                |

100

TOTAL:



### TABLE 1

### SERVICE FACTORS FOR THE SELECTION OF WEDGE BELTS

|                                                                                                                                                      | TYPES OF PRIME MOVERS        |                     |                   |                    |                     |            |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|-------------------|--------------------|---------------------|------------|--|--|--|
|                                                                                                                                                      | 'Soft' starts 'Heavy' starts |                     |                   |                    |                     |            |  |  |  |
|                                                                                                                                                      | Hour                         | s per day           | <sup>,</sup> duty | Hours per day duty |                     |            |  |  |  |
| TYPES OF DRIVEN MACHINES                                                                                                                             | 10 and<br>under              | Over<br>10 to<br>16 | Over<br>16        | 10 and<br>under    | Over<br>10 to<br>16 | Over<br>16 |  |  |  |
| Class 1 – Light duty<br>Blowers and fans<br>Centrifugal compressors and<br>pumps<br>Belt conveyors (uniformly loaded)                                | 1,0                          | 1,1                 | 1,2               | 1,1                | 1,2                 | 1,3        |  |  |  |
| Class 2 – Medium duty<br>Blowers and fans<br>Rotary compressors and pumps<br>Belt conveyors (not uniformly<br>loaded)<br>Generators                  | 1,1                          | 1,2                 | 1,3               | 1,2                | 1,3                 | 1,4        |  |  |  |
| Class 3 – Heavy duty<br>Brick machinery<br>Compressors and pumps<br>(reciprocating)<br>Conveyors (heavy duty)<br>Hammer mills<br>Punches and presses | 1,2                          | 1,3                 | 1,4               | 1,4                | 1,5                 | 1,6        |  |  |  |
| Class 4 – Extra heavy duty<br>Crushers<br>Mills                                                                                                      | 1,3                          | 1,4                 | 1,5               | 1,5                | 1,6                 | 1,8        |  |  |  |
| Mills                                                                                                                                                |                              |                     |                   |                    |                     |            |  |  |  |

### -2-

### TABLE 2

### MINIMUM PULLEY DIAMETER (mm)

| Speeds           |         |                   |     |     |     | Ν   | /linir | nun | ո բւ | ılley | / dia | me  | ter ( | ímm | ı)  |     |     |     |     |     |
|------------------|---------|-------------------|-----|-----|-----|-----|--------|-----|------|-------|-------|-----|-------|-----|-----|-----|-----|-----|-----|-----|
| of<br>faster     |         | Design Power (kW) |     |     |     |     |        |     |      |       |       |     |       |     |     |     |     |     |     |     |
| than in<br>r/min | То<br>1 | 3,0               | 4,0 | 5,0 | 7,5 | 10  | 15     | 20  | 25   | 30    | 40    | 50  | 60    | 75  | 90  | 110 | 130 | 150 | 200 | 250 |
| 500              | 67      | 90                | 100 | 112 | 125 | 140 | 180    | 200 | 212  | 236   | 250   | 280 | 280   | 315 | 375 | 400 | 450 | 475 | 500 | 560 |
| 600              | 67      | 85                | 90  | 100 | 112 | 125 | 140    | 180 | 200  | 212   | 224   | 250 | 265   | 280 | 300 | 335 | 375 | 400 | 475 | 500 |
| 720              | 67      | 80                | 85  | 90  | 90  | 106 | 132    | 150 | 160  | 170   | 200   | 236 | 250   | 265 | 280 | 300 | 335 | 375 | 450 | 500 |
| 960              | 67      | 75                | 80  | 85  | 95  | 100 | 112    | 132 | 150  | 180   | 180   | 200 | 224   | 250 | 280 | 280 | 300 | 335 | 400 | 450 |
| 1 200            | 67      | 71                | 80  | 80  | 95  | 95  | 106    | 118 | 132  | 150   | 160   | 180 | 200   | 236 | 236 | 250 | 265 | 300 | 335 | 355 |
| 1 440            | 67      | 67                | 75  | 80  | 85  | 85  | 100    | 112 | 125  | 140   | 160   | 170 | 190   | 212 | 236 | 236 | 250 | 280 | 315 | 335 |
| 1 800            | 67      | 67                | 71  | 75  | 80  | 85  | 95     | 106 | 112  | 125   | 150   | 160 | 170   | 190 | 212 | 224 | 236 | 265 | 300 | 335 |
| 2 800            | 67      | 67                | 67  | 67  | 80  | 80  | 85     | 90  | 100  | 112   | 125   | 140 | 160   | 170 | 180 | 212 | 224 | 236 | -   | -   |

### MECHANOTECHNOLOGY N3

### FORMULA SHEET

Any applicable formula may also be used.

- 1. Corrected power per belt = (basic power per belt + power increment per belt) × correction factor
- 2. Force (F) = Pressure (P) × Area (A)
- 3. Work done (W) = Force (F) × Distance (s)
- 4. Volume (V) = Area of base (A) × Perpendicular height  $( \square h )$