

# higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE

# **MECHANOTECHNOLOGY N3**

(8190373)

5 April 2023 (X-paper) 09:00–12:00

Drawing instruments may be used.

This question paper consists of 8 pages, 2-page tables and 1 formula sheet.



# DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MECHANOTECHNOLOGY N3 TIME: 3 HOURS MARKS: 100

## INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- Start each question on a new page. 4.
- Use only a black or a blue pen. 5.
  - Write neatly and legibly.
- 6.

Copyright reserved

1.2

1.3

1.4

#### **QUESTION 1: POWER TRANSMISSION, COUPLING OF SHAFTS, AND CLUTCHES**

-3-

- 1.1 A 60 kW electric motor with a speed of 1 500 r/min drives a rotary compressor by means of a wedge belt which rotates at 570 r/min. A centrifugal clutch is used for the heavy start between the two units for a medium-duty operation period of 11 hours.
  - 1.1.1 Refer to TABLE 1 (attached) and determine the service factor for the drive. (1) 1.1.2 Calculate the speed ratio. (2) 1.1.3 Refer to TABLE 2 (attached) and calculate the minimum pulley diameter if the design power is 75 kW. (2) 1.1.4 Calculate the torque developed by the electric motor. (2) State FOUR reasons for effectively lubricating a chain drive. (4) State THREE disadvantages of a worm and worm-wheel gear drive. (3) Name THREE types of flexible couplings. (3)
- 1.5 The table below shows the causes of slippage in cone clutches and how to overcome them. Choose a remedy from COLUMN B that matches the cause in COLUMN A. Write only the letter (A–D) next to the question number (1.5.1–1.5.3) in the ANSWER BOOK.

|       | COLUMN A                                                         |   | COLUMN B                                                                                            |
|-------|------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------|
| 1.5.1 | grease or oil on the contact areas                               | A | Rub both contact areas with coarse sandpaper                                                        |
| 1.5.2 | glazing of the friction<br>surfaces due to<br>continual slippage | В | Remove the grease or oil until the contact areas are clean and dry                                  |
| 1.5.3 | faulty operation of the control mechanism                        | С | Test regularly for wear on the pins,<br>links, bushes, etc., and make the<br>necessary adjustments. |
|       |                                                                  | D | Apply more grease to facilitate the smooth operation of a cone clutch.                              |
|       |                                                                  |   | (3 × 1)                                                                                             |

### **QUESTION 2: BRAKES**

State FOUR advantages of an external drum and band brake.

(3)

[20]

#### **QUESTION 3: BEARINGS**

- 3.1 Briefly explain the working principle of a friction bearing.
- 3.2 FIGURE 1 below shows a sketch of a single row radial ball bearing.

Name the parts indicated on the sketch by writing only the answer next to the letter (A–D) in the ANSWER BOOK.



3.3 Refer to the table below and answer the following questions:

- 3.3.1 What is the nominal bore diameter of bearing number 623? (1)
  - A bearing with a bore diameter of 9 mm must carry a dynamic load of 4 620 N.

Which bearing (number) would you use?

A bearing must be chosen to fit into a 19-mm diameter housing. The depth of the housing is 6 mm.

Which bearing (number) would you use?

| Principal          | Basic load | Bearing |        |
|--------------------|------------|---------|--------|
| dimensions<br>(mm) | Dynamic    | Static  | number |
| d D B              | С          | Co      |        |
| 3 10 4             | 488        | 146     | 623    |
| 4 12 4             | 806        | 280     | 604    |
| 6 19 6             | 1 720      | 620     | 626    |
| 9 26 8             | 4 620      | 1 960   | 629    |

 $\frac{1}{2}$ 

[10]





(1)

(1)

3.3.2

3.3.3

4.2

4.3

4.4

4.5

 $\Sigma$ 

#### **QUESTION 4: WATER PUMPS, COOLING, AND LUBRICATION**

4.1 FIGURE 2 below shows a stuffing box with soft packing (asbestos).

Name the parts indicated on the sketch by writing only the answer next to the letter (A–C) in the ANSWER BOOK.

-5-



|   | FIGURE 2                                                                                                                                                  | (3)                           |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|   | State FIVE reasons why industrial oil must be filtered.                                                                                                   | (5)                           |
|   | Name TWO types of water-cooling systems.                                                                                                                  | (2)                           |
|   | State TWO reasons why gearboxes should be lubricated                                                                                                      | (2)                           |
| 7 | Indicate whether the following statements are TRUE or FALSE. Write only 'True' or 'False' next to the question number (4.5.1 – 4.5.3) in the ANSWER BOOK. |                               |
|   | 4.5.1 Dry sump lubrication is used mainly in heavy and large engine vehicles.                                                                             |                               |
|   | 4.5.2 Dry sump lubrication is non-efficient.                                                                                                              |                               |
|   | 4.5.3 With the splash lubrication method, the crank shaft drives the                                                                                      | $\overrightarrow{\mathbf{x}}$ |
|   | (3 × 1)                                                                                                                                                   | (3)<br><b>[15]</b>            |

#### **QUESTION 5: HYDRAULICS AND PNEUMATICS**

- 5.1 Describe the functions of the following basic components in a pneumatic system:
  - 5.1.1 Compressor



- 5.1.2 Actuator
  - 5.1.3 Air service unit
- 5.2 Calculate the force exerted by the plunger of fluid displaced by a plunger (in kilo-newton) with a diameter of 280 mm exerting a pressure of 435 kPa.

(4) [**10**]

[6]

(6)

#### **QUESTION 6: INTERNAL COMBUSTION ENGINE**

Choose a description from COLUMN B that matches a statement in COLUMN A. Write only the letter (A - D) next to the question number (6.1 - 6.3) in the ANSWER BOOK.

|     | COLUMN A                                                      | COLUMN B                                            |
|-----|---------------------------------------------------------------|-----------------------------------------------------|
| 6.1 | Spark-ignition engine                                         | A induction phase of a two-stroke petrol engine     |
| 6.2 | Two-stroke compression engine                                 | B exhaust phase of a two-stroke                     |
| 6.3 | The upward movement of the piston causes a vacuum in the sump | petrol engine                                       |
|     |                                                               | C another name for the two-<br>stroke diesel engine |
|     |                                                               | D another name for the two-<br>stroke petrol engine |
| ٨   |                                                               | (3 × 2)                                             |

QUESTION 7: CRANES AND LIFTING MACHINES

| 7.1 | State THREE advantages of a load limiter.                                             | (3)        |
|-----|---------------------------------------------------------------------------------------|------------|
| 7.2 | State TWO advantages that result from increasing the number of drops in a steel rope. | (2)        |
| 7.3 | Briefly explain the purpose of a crane.                                               | (2)<br>[7] |

(3 × 2)

Copyright reserved

ン

#### **QUESTION 8: MATERIALS AND MATERIAL PROCESSES**

8.1 Choose a colour from COLUMN B that matches a metal in COLUMN A. Write only the letter (A–E) next to the question number (8.1.1–8.1.4) in the ANSWER BOOK.

|       | COLUMN A          | COLUMN B       |
|-------|-------------------|----------------|
| 8.1.1 | Low alloy steel   | A orange       |
| 8.1.2 | Cast steel        | B brown        |
| 8.1.3 | Low carbon steel  | C light purple |
| 8.1.4 | High carbon steel | D blue         |
|       |                   | Eblack         |
|       |                   | (4 × 1)        |

8.2 Refer to the table below and give the missing characteristics of the different polymers. Write only the answer next to the question number (8.2.1 – 8.2.4) in the ANSWER BOOK.

| Material               | Touch             | Sound             | Hardness                               | Flame<br>colour                             | Odour<br>when<br>burned   |
|------------------------|-------------------|-------------------|----------------------------------------|---------------------------------------------|---------------------------|
| Poly-<br>ethylene      | 8.2.1             | Dull when dropped | Fairly soft<br>and flexible            | Blue<br>with<br>yellow<br>tip               | Candle                    |
| Poly-<br>propylene     | Waxy              | 8.2.2             | Hard and stiff                         | Blue<br>with<br>yellow<br>tip               | Paraffin<br>and<br>candle |
| Polyvinyl-<br>chloride | Soft and rubbery/ | 8.2.3             | Soft and<br>flexible/hard<br>and stiff | Yellow<br>while in<br>flame                 | Acrid,<br>chlorine        |
| Polystyrene            | Smooth            | Metallic          | Rigid                                  | Bright<br>yellow<br>with<br>sooty<br>flakes | 8.2.4                     |



(4) [8]

(4)



#### -8-

#### **QUESTION 9: INDUSTRIAL ORGANISATION AND PLANNING**

| 9.1           | Name T<br>productiv                                              | WO classified faits ity in an organisat | actors to<br>tion. | consider                   | when    | intending    | to increase  | (2)                           |  |  |
|---------------|------------------------------------------------------------------|-----------------------------------------|--------------------|----------------------------|---------|--------------|--------------|-------------------------------|--|--|
| 9.2           | State the basic purposes of a budget in an organisation.         |                                         |                    |                            |         |              |              |                               |  |  |
| 9.3           | Briefly describe the purpose of each of the following documents: |                                         |                    |                            |         |              |              |                               |  |  |
|               | 9.3.1                                                            | Clock cards                             |                    |                            |         |              |              | $\overrightarrow{\mathbf{x}}$ |  |  |
|               | 9.3.2                                                            | Production flow                         | charts             |                            |         |              |              |                               |  |  |
|               | 9.3.3                                                            | Job cards                               |                    |                            |         |              |              |                               |  |  |
|               | 9.3.4                                                            | Requisition card                        | ls                 |                            |         |              | (4 × 2)      | (0)                           |  |  |
| $\frac{1}{2}$ |                                                                  |                                         |                    |                            |         |              | (4 × 2)      | (8)<br>[12]                   |  |  |
| QUESTI        | ON 10: EN                                                        | TREPRENEURS                             | HIP                |                            |         |              |              |                               |  |  |
| 10.1          | Explain th                                                       | ne concept small                        | business (         | enterpris <mark>e</mark> . |         |              |              | (4)                           |  |  |
| 10.2          | State FO<br>ideas.                                               | UR daily activities                     | that can h         | nelp an entr               | reprene | eur to gener | ate business | (4)<br><b>[8]</b>             |  |  |
|               |                                                                  |                                         |                    |                            |         |              | TOTAL:       | 100                           |  |  |

## TABLE 1

## SERVICE FACTORS FOR THE SELECTION OF WEDGE BELTS

|                                                                                                                                                      | TYPES OF PRIME MOVERS |                     |            |                    |                     |            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|------------|--------------------|---------------------|------------|--|--|
|                                                                                                                                                      | '?                    | Soft' start         | s          | 'Heavy' starts     |                     |            |  |  |
|                                                                                                                                                      | Hour                  | s per day           | duty       | Hours per day duty |                     |            |  |  |
| TYPES OF DRIVEN MACHINES                                                                                                                             | 10 and<br>under       | Over<br>10 to<br>16 | Over<br>16 | 10 and<br>under    | Over<br>10 to<br>16 | Over<br>16 |  |  |
| Class 1 – Light duty<br>Blowers and fans<br>Centrifugal compressors and pumps<br>Belt conveyors (uniformly loaded)                                   | 1,0                   | 1,1                 | 1,2        | 1,1                | 1,2                 | 1,3        |  |  |
| Class 2 – Medium duty<br>Blowers and fans<br>Rotary compressors and pumps<br>Belt conveyors (not uniformly<br>loaded)<br>Generators                  | 1,1                   | 1,2                 | 1,3        | 1,2                | 1,3                 | 1,4        |  |  |
| Class 3 – Heavy duty<br>Brick machinery<br>Compressors and pumps<br>(reciprocating)<br>Conveyors (heavy duty)<br>Hammer mills<br>Punches and presses | 1,2                   | 1,3                 | 1,4        | 1,4                | 1,5                 | 1,6        |  |  |
| Class 4 – Extra heavy duty<br>Crushers<br>Mills                                                                                                      | 1,3                   | 1,4                 | 1,5        | 1,5                | 1,6                 | 1,8        |  |  |

#### TABLE 2

#### **MINIMUM PULLEY DIAMETER (mm)**

| Speeds                                                                   | Minimum pulley diameter (mm) |     |     |     |     |     |     |     |      |      |     |      |     |     |     |     |     |     |     |     |
|--------------------------------------------------------------------------|------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|
| ot<br>faster                                                             |                              |     |     |     |     |     |     | De  | esig | n Po | owe | r (k | W)  |     |     |     |     |     |     |     |
| than in<br>r/min                                                         | То<br>1                      | 3,0 | 4,0 | 5,0 | 7,5 | 10  | 15  | 20  | 25   | 30   | 40  | 50   | 60  | 75  | 90  | 110 | 130 | 150 | 200 | 250 |
| 500                                                                      | 67                           | 90  | 100 | 112 | 125 | 140 | 180 | 200 | 212  | 236  | 250 | 280  | 280 | 315 | 375 | 400 | 450 | 475 | 500 | 560 |
| 600                                                                      | 67                           | 85  | 90  | 100 | 112 | 125 | 140 | 180 | 200  | 212  | 224 | 250  | 265 | 280 | 300 | 335 | 375 | 400 | 475 | 500 |
| 720                                                                      | 67                           | 80  | 85  | 90  | 90  | 106 | 132 | 150 | 160  | 170  | 200 | 236  | 250 | 265 | 280 | 300 | 335 | 375 | 450 | 500 |
| 960                                                                      | 67                           | 75  | 80  | 85  | 95  | 100 | 112 | 132 | 150  | 180  | 180 | 200  | 224 | 250 | 280 | 280 | 300 | 335 | 400 | 450 |
| 1 200                                                                    | 67                           | 71  | 80  | 80  | 95  | 95  | 106 | 118 | 132  | 150  | 160 | 180  | 200 | 236 | 236 | 250 | 265 | 300 | 335 | 355 |
| 1 440                                                                    | 67                           | 67  | 75  | 80  | 85  | 85  | 100 | 112 | 125  | 140  | 160 | 170  | 190 | 212 | 236 | 236 | 250 | 280 | 315 | 335 |
| 1 800                                                                    | 67                           | 67  | 71  | 75  | 80  | 85  | 95  | 106 | 112  | 125  | 150 | 160  | 170 | 190 | 212 | 224 | 236 | 265 | 300 | 335 |
| 2 800                                                                    | 67                           | 67  | 67  | 67  | 80  | 80  | 85  | 90  | 100  | 112  | 125 | 140  | 160 | 170 | 180 | 212 | 224 | 236 | -   | -   |
| 2 800 67 67 67 67 67 80 80 85 90 100 112 125 140 160 170 180 212 224 236 |                              |     |     |     |     |     |     |     |      |      |     |      |     |     |     |     |     |     |     |     |

#### **MECHANOTECHNOLOGY N3**

#### FORMULA SHEET

Any applicable formula may also be used.

- 1. Corrected power per belt = (basic power per belt + power increment per belt) × correction factor
- 2. Force (F) = Pressure (P)  $\times$  Area (A)
- 3. Work done (W) = Force (F) × Distance (s)
- 4. Volume (V) = Area of base (A) × Perpendicular height (lh)