

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

AMENDED MARKING GUIDELINE

NATIONAL CERTIFICATE FITTING AND MACHINING THEORY N2

1 AUGUST 2019

This marking guideline consists of 9 pages.

Chief Marker: CHIEAVA E.	_Signature:
Internal Moderator: OLFAST J.	Signature:
DMCM: MPHANCELE G	Signature Lettele
MCM: MNTAMBO XH	Signature:

Copyright reserved

Please turn over

FITTING AND MACHINING THEORY N2

QUESTION	1:	OCCUP/	ATIONAL	SAFETY
----------	----	--------	---------	--------

1.1	1.1.1	D✓
	1.1.2	E✓
	113	Δ 🗸

1.1.3 ΑV 1.1.4 B√

1.1.5 C✓

 (5×1)

OR

1.2.3 B✓

1.2.4 A<

1.2.5 C V

> (5×1) [5]

QUESTION 2: COUPLINGS

2.1.2 Flexible√

> (2×1) (2)

(1)

2.2.2 Permanent/Fixed/Rigid coupling√

(1)

2.2.3 A – driving member (turbine) ✓

B – driven member (pump) ✓

(2) [6]

QUESTION 3: LIMITS AND FITS

3.4 Maximum allowance =
$$(40 + 0.035 \text{ mm}) - (40 - 0.020 \text{ mm})$$

= $40.035 - 39.98\checkmark$
= $0.055 \text{ mm}\checkmark$ (2)

3.5 Minimum allowance =
$$(40 + 0.030 \text{ mm}) - (40 - 0.010 \text{ mm})$$

= $40.030 - 39.99\checkmark$
= $0.04 \text{ mm}\checkmark$ (2)

Copyright reserved

Please turn over

FITTING AND MACHINING N2

QUESTION 4: BEARINGS

4.1	A bearing is a device designed to reduce/minimise friction between two parts of a machine, one stationary and the other rotating. \checkmark	(1)
4.2	 White metal ✓ Cast iron ✓ Bronze ✓ Nylon ✓ Teflon (Any 4 × 1) 	(4) [5]
		[0]
QUEST	ION 5 : LUBRICATION AND VALVES	
5.1	 Siphon-wick lubricator√ Sight-feed lubricator√ Needle lubricator√ Drip-feed lubricator 	(2)
	(Any 3 x 1)	(3)
5.2	When a fluid flows through a foot valve, the flap of the foot valve opens ✓ and allows the fluid to flow. ✓ If the flow of the fluid is reversed, the flap closes and does not allow the fluid to flow back. ✓	(3) [6]
QUEST	ION 6: PACKING, STUFFING BOXES, JOINTS AND WATER PIPE SYSTEMS	
6.1	 Pressure within the pipe√ Nature of fluid medium√ Temperature of fluid√ Environmental conditions√ 	
	(4 x 1)	(4)
6.2	The wedge design prevents steam from escaping by applying a light pressure on the piston rod. \checkmark	(1)
6.3	 Plastic piping is relatively cheap√ Easy to handle due to its light weight√ No machining required√ Good insulator when used with electricity√ Combining pipes is very easy Corrosion resistant Easy to machine 	(1)
	(Any 4 x 1)	(4) [9]

FITTING AND MACHINING N2

QUESTION 7: PUMPS

7.1	7.1.1 7.1.2 7.1.3	Single acting pump✓ Double acting pump✓ Piston pump✓	(3 × 1)	(3)
7.2	VaneFlexibScrew	ll screw gear pump√ type pump√ le impeller pump	(3 × 1)	(3)
			,	[6]
QUEST	ION 8: CC	OMPRESSORS		
B – Diffu	user ring√	nlet/suction port/suction side✓		
	ute casing eller eye√		(4 × 1)	[4]
QUEST		V-BELTS, GEAR DRIVES, CHAIN DRIVES AND SEARBOXES	REDUCTION	
9.1		drives√		
	GearBelt d	drives√ rives	(Any 2 × 1)	(2)
9.2	The defle	ection should be 16 mm for every meter of span. ✓		(1)
9.3	WhereTo incTo char	nsmit high power ✓ e high mechanical is required ✓ erease speed and reduce torque or vice versa ✓ eange the direction of drive space is limited		
		g as in automobile engines	(Any 3 × 1)	(3)
9.4	9.4.1	Ensure that bearings are well lubricated✓		(1)
	9.4.2	Measure the sag and adjust if it is too large✓		(1)
9.5		peed of the motor would be too fast.✓ eavy load put onto the motor would cause the motor to eg✓	stop	(2)
9.6	_	e-reduction gearbox√		
		e-reduction gearbox√ and worm-wheel gearbox	(Any 2 × 1)	(2) [12]

TOTAL SECTION A:

Please turn over

60

SECTION B (Any TWO answers)

QUESTION 10: HYDRAULICS AND PNEUMATICS

- 10.1 Power transmission✓
 - Lubrication√
 - Cooling√
 - Prevents corrosion
 - Removes dirt

 $(Any 3 \times 1) \qquad (3)$

10.2 10.2.1

10.2.2

10.2.3

 $(3 \times 1) \qquad (3)$

- 10.3 10.3.1 Provides mechanical energy to the hydraulic fluid. ✓
 - 10.3.2 It protects the system from experiencing excessive pressure. ✓
 - 10.3.3
- Stores hydraulic fluid until it is required.✓
- Allows contaminants from the fluid to settle down at the bottom of the tank
- Dissipates heat generated in the circuit system
- Serves as the base for mounting the electric motor and the pump
- Tank provides the drain point for oil in case the oil has to be renewed

 $(3 \times 1) \qquad (3)$

10.4 Control valve√

(1)

MARKING (UIDELINE
-----------	----------

-6-FITTING AND MACHINING N2

10.5	10.5.1 10.5.2 10.5.3 10.5.4 10.5.5	Non-return valve/check valve✓ Compressor✓ Pneumatic motor✓ Pressurised receiver/air receiver/air reservoir✓ Single acting cylinder✓	(5 × 1)	(5)
10.6	10.6.1 10.6.2 10.6.3	False√ True√ True√	(3 × 1)	(3)
10.7		ffected by dust or corrosive atmospheres√ be used in damp and inflammable conditions√		(2) [20]

QUESTION 11: CENTRE LATHES

- 11.1 Used to support long work pieces on a centre lathe✓
 - Used for turning long, small diameter shafts on a centre lathe√

 (2×1) (2)

- 11.2 11.2.1 Travelling steady✓
 - 11.2.2 Fixed steady√

 $(2 \times 1) \qquad (2)$

- 11.3 Angle that the thread makes with a line perpendicular to the axis of the thread√ (1)
- 11.4 11.4.1 Lead = No. of starts \times Pitch of thread = 3×10 = $30 \text{ mm}\checkmark$

$$\tan \theta = \frac{Lead}{\pi Dm}$$
$$= \frac{30}{\pi \times 155} \checkmark$$

= 0.0616

$$\theta = 3^{\circ} 31' \text{ or } 3.525^{\circ} \checkmark$$
 (3)

- 11.4.2 Leading tool angle = 90° (Helix angle + Clearance angle) = 90° - $(3^{\circ}31' + 3^{\circ})\checkmark$ = 90° - $(6^{\circ}31')$ = $83^{\circ}29'$ or $83.475^{\circ}\checkmark$ (2)
- 11.4.3 Following tool angle

$$=90^{\circ} + (Helix\ angle - Clearance\ angle)$$

$$= 90^{\circ} + (3^{\circ}31' - 3^{\circ}) \checkmark$$

$$=90^{\circ}+(0^{\circ}31')$$

$$= 90^{\circ}31' \text{ or } 90.525^{0} \checkmark \tag{2}$$

-8-FITTING AND MACHINING N2

11.5
$$N = 24 r/sec$$

 $N = 24 \times 60$
 $N = 1 440 r/min \checkmark$
 $V = \pi DN$
 $= \pi \times 0.02 \times 1440 \checkmark$
 $N = 90.478 m/min \checkmark$ (3)

11.6
$$L = f \times N \times t$$

$$f = \frac{L}{N \times t} \checkmark$$

$$= \frac{700}{130 \times 15} \checkmark$$

$$f = 0.36 \, mm/rev \checkmark$$
(3)

QUESTION 12: MILLING MACHINES AND SURFACE GRINDERS

- 12.1 Used to indicate the fraction of a turn in the holes on a specific hole-circle. OR
 They maintain the number of holes which represent the fraction part of a
 turn√ (Any 1) (1)
- 12.2 The Cincinnati index plate has holes on both sides so it is reversible ✓ whereas the Brown and Sharp system has three loose plates with different hole-circles on each plate. ✓ (2)
- 12.3 Slab milling cutter or rose cutter√ (1)

Indexing = 4 full turns of the crank handle and 12 holes in a 16-hole circle OR
4 full turns of the crank handle and 15 holes in a 20-hole circle (7)

-10-FITTING AND MACHINING N2

12.5	HelpsReductionEasieImproProvide	ents the continuous forming of shavings ✓ in the removal of shavings ✓ ces chattering ✓ r flow of coolant ✓ ves the finish on the workpiece des a better cutting action economical on power consumptions (Any 4 × 1)	(4)
12.6	12.6.1	Grit size refers to the actual size of the abrasive particles✓	
	12.6.2	Grade of the grinding wheel refers to the strength of the bond which holds the abrasive grains in place; Or refers to the hardness or softness and is relative to the strength of the bond to hold the grains of the wheel in position. ✓	
	12.6.3	The structure of the wheel refers to the spacing of the grit in the wheel ✓	
	12.6.4	The structure number indicates the structure of the grinding wheel√ (4 × 1)	(4)
		(4 ^ 1)	(4)
12.7	Produces	s a flat surface which is smooth and highly accurate. ✓	(1) [20]
		TOTAL SECTION B: GRAND TOTAL:	40 100